EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

Goodfellow I, Shlens J, Szegedy C, et al. Explaining and Harnessing Adversarial Examples[J]. arXiv: Machine Learning, 2014.

@article{goodfellow2014explaining,
title={Explaining and Harnessing Adversarial Examples},
author={Goodfellow, Ian and Shlens, Jonathon and Szegedy, Christian},
journal={arXiv: Machine Learning},
year={2014}}

Adversarial examples 中FGSM(fast gradient sign method)方法的来源,
\tilde{x}=x+ \epsilon \: \mathrm{sign} (\nabla_x J(\theta, x, y)).

主要内容

在图像中, 像素点的进度是1/255, 所以如果我们在图像上的摄动小于此精度, 那么图像实际上是不会产生任何变化的. 作者首先说明, 即便是线性模型, 在输入上的微小摄动也能够引起结果(当维数够大)的很大变化.

从线性谈起

\tilde{x} = x+\eta, 线性摄动如下
w^T\tilde{x} = w^Tx+w^T\eta,

此时结果的摄动为w^T\eta, 假设w的平均值为m. 注意到, 在\|\eta\|_{\infty}<\epsilon的条件下, \eta=\epsilon \: \mathrm{sign}(w)时摄动最大(这也是FGSM的启发点), 此时摄动为\epsilon mn, 注意到, 假设\epsilon, m是固定的, 那么n足够大的时候摄动就会特别大.

非线性

由线性启发至非线性(因为很多deep networks 的表现是线性的), 便是
\tilde{x}=x+ \epsilon \: \mathrm{sign} (\nabla_x J(\theta, x, y)).
实验证明, 即便是GoogLeNet这样的网络也会被生成的adversarial examples所欺骗.

其实看这篇文章的主要一个问题就是为什么\eta \not = \epsilon \: \nabla_x J(\theta, x, y), 逼近这个方向才是令损失函数增长最快的方向.

文中有这么一段话, 不是很明白:

Because the derivative of the sign function is zero or undefined everywhere, gradient descent on the adversarial objective function based on the fast gradient sign method does not allow the model to anticipate how the adversary will react to changes in the parameters. If we instead adversarial examples based on small rotations or addition of the scaled gradient, then the perturbation process isitselfdifferentiableandthelearningcantakethereactionoftheadversaryintoaccount. However, we did not find nearly as powerful of a regularizing result from this process, perhaps because these kinds of adversarial examples are not as difficult to solve.

顺便记一下论文的总结:

  • 正是因为deep networks表现过于线性, 才会导致advesarial examples.
  • 不同的网络的adversarial examples是相通的, 这可能是因为二者逼近的函数是近似的
  • 摄动的方向而非个别特定点起了更重要的作用
  • 对抗训练是一种正则化过程
  • 越容易优化的模型又容易被欺骗
  • 线性模型缺乏对抗欺骗的能力
  • 拟合输入数据分布的模型缺乏对抗欺骗的能力
  • Ensembles are not resistant to adversarial examples. (多个模型组合(取平均判断类别)依然缺乏对抗欺骗的能力).
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容