芒格思维模型之立方体模型

千万富翁的故事

在第二次世界大战即将结束时,所有人都知道战后整个世界要重建:西欧要重建,美国要增长,日本也需要重建,俄罗斯也要发展经济。

这就意味着什么呢?

意味着战后的石油消费会猛增,因为基础建设和经济增长需要大量石油能源,就会成为紧缺物资,价格会翻倍。

这一点几乎每个人都想能想到:如果有人能低成本将大量石油运输到世界各地,肯定能赚到大钱。

石油的海上运输需要轮船,现在的问题变成了建造什么样的轮船才能让建造成本和运输成本更低呢?

有一个希腊的海运大亨,名字叫Starvos Niarchos ,他不但知道世界需要石油,他还知道一个几何学的立方体模型。

一个基本的几何知识:

面积 = 长 × 宽

体积 = 长 × 宽 × 高

建造轮船的成本等于表面积,容积等于体积。也就是说,随着船的增大,建造轮船表面积所需的钢铁将会以平方的速率增加,而轮船的容量将会以立方的速率增加。

这意味着,轮船越大,我们就能用更少的钢铁获得更多的容积。

Starvos Niarchos 明白了这个道理后,就斥资建造了一艘超大型原油运输船,取名为Knock Nevis(诺克·耐维斯号)。诺克·耐维斯号不仅是世界上最长的船只,它还是世界上最长的人工制造水面漂浮物,其长度为458米,比横躺下来的艾菲尔铁塔还长。诺克·耐维斯号宽度为67米,宽为什么是67米呢?因为苏伊士运河宽度只有71米,要通过71米宽的苏伊士运河,67米就是一个极限宽度。这艘巨型运输船建成后,Starvos Niarchos用它运输原油,第一次就收回了投资,还赚了上千万美金。

这就是模型的力量:

从几何中获得的简单认知模型,即面积随边长变化,容量随立方体体积变化,让Starvos Niarchos 一次就赚了上千万美金。


老鼠和大象有何不一样

再用立方体模型来解释一个现象:

老鼠的表面积大概为14平方英寸,体积为3立方英寸;

大象的表面积为57000平方英寸,体积为864000立方英寸;

简单算算,老鼠表面积与体积的比为5:1,大象表面积与体积的比是1:15,二者相对比为75。

我们用物理学家的思考方式:

老鼠是由很多细胞构成的,而大象也是由大量细胞组成。每个细胞都会产生热量,假如大象的单个细胞产生的热量和老鼠单个细胞产生的热量一样多,会发生什么情况?

大象会爆炸!

因为对于大象这样一个庞然大物,表面积相对太小,热量来不及散发,就会导致温度过高而爆炸。

而实际上,大象并没有爆炸。我们可据此得知大象体内细胞的新陈代谢要比老鼠的慢很多。

一个简单的立方体模型竟然解释了一个基础生物规律,即随着物种体积的变大,它的新陈代谢必须减速。


1个大披萨大于2个小披萨

面积和体积的关系可以应用在我们生活的各种场景中,比如你去餐厅吃披萨,原来预订的是半径为12公分的披萨,到店后女服务员抱歉告知,12公分的已经卖完了,要不上一个半径9公分和6公分的,但只收12公分披萨的钱。请问你要还是不要?

有些人可能就板着指头算了,9公分加6公分是15公分,比原来的12公分大,占便宜了啊,要要要,赶紧上。

且慢,先别急着吃,我们虽然不贪小便宜,但绝对不做冤大头。披萨的形状是个圆,厚度基本相同。我们以面积比来衡量披萨实际大小,也就是说,披萨的大小与半径的平方相关。

那么12公分的披萨就是12 × 12 = 144 ,

而6公分的就是6 × 6 = 36 ,

9公分的是9 × 9 = 81 ,

6公分和9公分的合起来就是

36 + 81 = 117 。

两个小的加起来都要比一个12公分的披萨相对面积144小很多,非常不划算啊。

明白了这点后,服务员用6公分和9公分的披萨来替代12公分的时,你可能就不会那么爽快的答应了。


上述是表面积的例子,我们再来看一个体积的例子:

「10元1个」还是「 3个10元」

马路边一个卖西瓜的人在不停地叫卖:

「1个10元,10元3个」。

这时过来一位细心的顾客,原来卖家有两种西瓜,大的10元1个,小的10元3个。他看了看两种西瓜,目测大西瓜直径约8寸,小西瓜直径约5寸。

他犯了难,到底买哪种更合算呢?

让我们用立方体模型来帮帮他:

首先,从体积上来比一比,西瓜近似一个球,球的体积公式是4/3πr3,或是1/6πD3。其中r是半径,D是直径。

求它们体积比时,可省去1/6和π。于是,

大西瓜体积 :3个小西瓜体积之和

= [8×8×8]∶[(5×5×5)×3]

=512∶375

由此可见,买3个小西瓜是很吃亏的。

1个大西瓜 vs. 4个小西瓜

那么,假如再多给你一个小西瓜即一共4个,你会买大西瓜还是小西瓜呢?

这时从体积上看两种情况相差不多了。但如果考虑瓜皮的多少,还是买大西瓜合算。这是由于球的表面积公式为πD2,所以,

大西瓜的表面积 ∶ 4个小西瓜的表面积之和

=[π×8×8]∶[(π×5×5)×4]

=64∶100

由此可知,4个小西瓜合在一起的瓜皮,将近是大西瓜瓜皮的2倍。所以综合起来考虑,还是买一个大西瓜合算。

你看,一个来自小学的几何知识,简单的计算面积和体积的立方体模型,竟然有这么大的用处,有人用它赚到了1000万美金,我们还据此推测出了一个基础生物规律,吃披萨,挑西瓜都配得上用场。

知道模型很重要,但在日常生活中应用和巩固模型更重要,如果不能随时应用,我们就会遗忘,不能应用于现实的知识究竟有什么用呢?

— 小结 —

面积是平方,体积是立方,体积增长的速率要快于表面积增长的速率。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容

  • 高山低头,儿女悲泣! 母亲走了,我们的心空了,望着她的遗像,往日的一幕幕浮现在我们的眼前,成为我们挥之...
    付开拓阅读 1,713评论 5 4
  • 这篇仅为记录孩子的一个阶段的画,画名也是她取的 等她长大后,翻开我的简书可以找到童年的记忆,就可以了。 她说,她想...
    沸点儿爱画画阅读 720评论 1 0
  • 从去年以来,各大直播平台如雨后春笋般涌现出来。直播平台催生了一个新职业“网红”。据不完全统计我国目前的网红人数已经...
    段誉问情阅读 622评论 1 1
  • About XWork xwork2 是一个通用的命令模式框架,它构成了struts2 的核心。它的特点: 基于简...
    咯小屋阅读 386评论 1 0