Manipulating Data - 重计算数据框所有因子列的水平

重计算数据框所有因子列的水平

问题

你想要重新计算一个数据框中所有因子列(变量)的因子水平。

方案

有时候在读入和清理数据之后,你会发现数据(数据框)结果中有的因子列有一些不存在的因子水平。

例如,下面的d有一个空行。当它被读入时,因子列会出现""水平,它不应该是数据的一部分。

d <- read.csv(header = TRUE, text='
x,y,value
a,one,1
,,5
b,two,4
c,three,10
')

d
#>   x     y value
#> 1 a   one     1
#> 2             5
#> 3 b   two     4
#> 4 c three    10

str(d)
#> 'data.frame':    4 obs. of  3 variables:
#>  $ x    : Factor w/ 4 levels "","a","b","c": 2 1 3 4
#>  $ y    : Factor w/ 4 levels "","one","three",..: 2 1 4 3
#>  $ value: int  1 5 4 10

即便移除了空行,因子中仍有""水平:

# 移除第二行
d <- d[-2,]
d
#>   x     y value
#> 1 a   one     1
#> 3 b   two     4
#> 4 c three    10

str(d)
#> 'data.frame':    3 obs. of  3 variables:
#>  $ x    : Factor w/ 4 levels "","a","b","c": 2 3 4
#>  $ y    : Factor w/ 4 levels "","one","three",..: 2 4 3
#>  $ value: int  1 4 10

使用droplevels

最简单的方式是使用droplevels()函数:

d1 <- droplevels(d)
str(d1)
#> 'data.frame':    3 obs. of  3 variables:
#>  $ x    : Factor w/ 3 levels "a","b","c": 1 2 3
#>  $ y    : Factor w/ 3 levels "one","three",..: 1 3 2
#>  $ value: int  1 4 10

使用vapplylapply

为了重新计算所有因子列的水平,我们使用以is.factor()为参数的vapply()函数去找出哪些列是因子,然后再利用以factor()函数为参数的lapply()操作将那些列重新计算因子水平。

# 找出哪些列是因子
factor_cols <- vapply(d, is.factor, logical(1))

# 把factor()函数应用到那些列,并把结果赋回d
d[factor_cols] <- lapply(d[factor_cols], factor)
str(d)
#> 'data.frame':    3 obs. of  3 variables:
#>  $ x    : Factor w/ 3 levels "a","b","c": 1 2 3
#>  $ y    : Factor w/ 3 levels "one","three",..: 1 3 2
#>  $ value: int  1 4 10

另见

关于重计算一个因子变量水平的信息,参见 ../Re-computing_the_levels_of_factor.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容