There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
Example
Given n = 2, prerequisites = [[1,0]]
Return true
Given n = 2, prerequisites = [[1,0],[0,1]]
Return false
思路1 (In degree)
已知 course number, prerequisites (edge information)
- 根据prerequisites和course number的信息创建graph
-
graph: 用List[] graph = new ArrayList[courseNumbder] 的数据结构来存储
因为course #是从0 开始,所以graph[0]:[1, 2] 表示 课程0是课程1,2的前置课。 - in-degree: 用int[] degree 的数据结构来存储
方法:
course 前置
[ 1, 0 ]
[ 2, 0]
[ 2, 1 ]
-->
graph
[0]: [1, 2] 课程0是1,2的前置
[1]: [2]
注意:如果某些课并非任何课的前置,那么graph[x]: new ArrayList<Integer>() 为空
degree
[0]: 0 课程0的in-degree是0
[1]: 1
[2]: 2
- 用拓扑排序法遍历图,计数所有in-degree变为0的节点。当DAG为空或不存在indegree为0的节点时,停止操作。比较得到的所有in-degree == 0的节点总数,是否与总课程数相当,如果相等则表示无环。
方法:
- 将degree为0 的课程全部加入queue中.
- 从queue中取一个node, count++ (因为queue中都是in-degree为0的节点)
- 在graph中找到他的后置节点,在degree中将每个后置节点in-degree – 1
- 减一以后如果其in-degree变为0,则将其加入queue
直到queue为空
- 判断count == numCourses,等于则表示全部上完了,为true;否则为false
public class Solution {
/**
* @param numCourses a total of n courses
* @param prerequisites a list of prerequisite pairs
* @return true if can finish all courses or false
*/
public boolean canFinish(int numCourses, int[][] prerequisites) {
// Write your code here
if (prerequisites == null || prerequisites.length == 0) {
return false;
}
//1. construct graph and indegree
List[] graph = new ArrayList[numCourses];
int[] indegree = new int[numCourses];
// initialize graph
for (int i = 0; i < numCourses; i++) {
graph[i] = new ArrayList<Integer>();
}
for (int i = 0; i < prerequisites.length; i++) {
graph[prerequisites[i][1]].add(prerequisites[i][0]);
indegree[prerequisites[i][0]]++;
}
//2. put all node with 0 indegree into a queue
Queue<Integer> queue = new LinkedList<Integer>();
for (int i = 0; i < numCourses; i++) {
if (indegree[i] == 0) {
queue.add(indegree[i]);
}
}
//3. traverse the graph and count the course we took
int count = 0;
while (!queue.isEmpty()) {
count++;
int curCourse = queue.poll();
int size = graph[curCourse].size();
for (int i = 0; i < size; i++) {
int nextCourse = (int)graph[curCourse].get(i);
indegree[nextCourse]--;
if (indegree[nextCourse] == 0) {
queue.add(nextCourse);
}
}
}
return count == numCourses;
}
}
Solution 2 (DFS to Check if there is a cycle in the directed graph)
- 用DFS来判断当前图中是否有环,如果有环,那么则无法找到Topological Order, 即不能完成所有课程
- 对题目已知条件需要做预处理,需要用一个
HashMap
来存,preCourse vs Courses
- 需要2个data structure来保存:
- 整个处理过程中的
visited nodes
- 本次dfs过程中已经加入访问路径的node
recStack
- 整个处理过程中的
- 遍历所有课程,即 for loop through course (0 ~ N),对每个课程都用DFS判断是否从它出发能找到环。一旦找到就说明不可能遍历完。直接返回false
-
visited nodes
是对整个所有遍历的访问节点的记录,所以不受backtracking清除标记的影响。但是recStack
是对当前路径的标记,所以需要清除。
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
if (prerequisites == null || prerequisites.length == 0 || prerequisites[0].length == 0) {
return true;
}
if (numCourses == 0) {
return true;
}
//1. Generate nodeVsNeighbors map
Map<Integer, List<Integer>> nodeVsNeighbors = new HashMap<> ();
for (int i = 0; i < prerequisites.length; i++) {
int course = prerequisites[i][0];
int preCourse = prerequisites[i][1];
List<Integer> courses = nodeVsNeighbors.getOrDefault (preCourse, new ArrayList<Integer> ());
courses.add (course);
nodeVsNeighbors.put (preCourse, courses);
}
//2. scan all course and try to find the cycle
boolean[] visitedCourses = new boolean[numCourses];
boolean[] recStack = new boolean[numCourses];
for (int i = 0; i < numCourses; i++) {
if (canFindCycle (nodeVsNeighbors, visitedCourses,recStack, i)) {
return false;
}
}
return true;
}
// if can find cycle, then there is no topological sort, then cannot finish all courses
public boolean canFindCycle (Map<Integer, List<Integer>> nodeVsNeighbors, boolean[] visitedCourses, boolean[] recStack, int courseNum) {
// order matters, if it is in recStack, no matter it is in visited or not, must return true;
if (recStack[courseNum]) {
//System.out.println ("2:" + courseNum);
return true;
}
if (visitedCourses[courseNum] && !recStack[courseNum]) {
//System.out.println ("1:" + courseNum);
return false;
}
visitedCourses[courseNum] = true;
recStack[courseNum] = true;
for (int nextCourse : nodeVsNeighbors.getOrDefault (courseNum, new ArrayList<Integer> ())) {
//System.out.println ("3:" + nextCourse);
if (canFindCycle (nodeVsNeighbors, visitedCourses, recStack, nextCourse)) {
//System.out.println ("4:" + courseNum);
return true;
}
}
recStack[courseNum] = false;
//System.out.println ("5:" + courseNum);
return false;
}
}