堆排序

堆必须同时具备两个特性:1)结构性;2)堆序性

结构性:

堆是一棵完全二叉树,所谓完全二叉树即叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树。

堆序性:

堆序性说得通俗一点儿就是,父节点中的元素不小于(不大于)任意子节点的元素。
所以,在一个大根堆中,一个节点的元素在其子树所有元素组成的集合中必定是最大值。

堆的存储

一般用数组来表示堆,若根结点存在序号0处, i结点的父结点下标就为(i-1)/2。i结点的左右子结点下标分别为2*i+12*i+2

节点下沉

“节点下沉”的目的是在此二叉树中将根节点的元素放至合适的坑位,相应地调整其他元素,最终使得包括根节点在内的整棵二叉树都满足“堆序性”。

“节点下沉”的实施方案说来也很简单:当父节点的元素值小于左子节点的元素值或者右子节点的元素值时,将父节点的元素值与左右子节点较大的元素值进行交换,针对交换后的父节点,循环执行“元素下沉”操作,“元素下沉”的终止条件就是父节点的元素值不小于其任意左右子节点的元素值,或者当前父节点无子节点(即当前节点为叶子节点)。

算法描述

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n]
  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
#include <stdio.h>
#define LeftChild(i) (2*(i)+1)
void swap(int *a,int *b){
    int c = *a;
    *a = *b;
    *b = c;
}

//下沉
void downSortArray(int num[], int index,int count){
    int i = index;
    int child;
    for (;LeftChild(i)<count; i = child){
        //取子节点中 较大节点
        child = LeftChild(i);
        if ((child +1)< count && num[child+1]>num[child]){
            child++;
        }
        
        //如果需要则交换
        if (num[i]<num[child]){
            swap(&num[i],&num[child]);
        }else{
            break;
        }
    }
}

//堆排序
void heapSort(int num[], int count){
    //构建大根堆
    for (int i = count/2; i>=0; i--) {
        downSortArray(num,i,count);
    }
    for (int i=0; i<count; i++) {
        printf("%d ",num[i]);
    }
    printf("\n");
    //并交换,下沉
    for (int i = count-1; i>=0; i--) {
        swap(&num[i],&num[0]);
        downSortArray(num,0,i);
    }
}

int main() {
    //读取输入数据
    int num[100] = {0};
    int count;
    scanf("%d",&count);
    for (int i = 0; i<count; i++) {
        scanf("%d",&num[i]);
    }
    
    //堆排序
    heapSort(num,count);
    
    //输出结果
    for (int i=0; i<count; i++) {
        printf("%d ",num[i]);
    }
    printf("\n");
}

复杂度分析

堆排序是一种选择排序,其时间复杂度为O(nlogn)

参考

浅谈堆排序

如何进行堆排序

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349