IO执行的两个阶段
在Linux中,对于一次读取IO的操作,数据并不会直接拷贝到程序的程序缓冲区。通常包括两个阶段: (1)等待数据准备好,到达内核缓冲区;
(2)从内核向进程复制数据。
五种IO模型
阻塞式I/O
非阻塞式I/O
I/O复用(select,poll,epoll等)
信号驱动式I/O(SIGIO)
异步I/O(POSIX的aio_系列函数)
阻塞式I/O模型
在IO执行的两个阶段中,进程都处于blocked(阻塞)状态,在等待数据返回的过程中不能做其他的工作,只能阻塞的等在那里.
- 优缺点:
优点是简单,实时性高,响应及时无延时,但缺点也很明显,需要阻塞等待,性能差;
非阻塞式I/O
在非阻塞状态下,IO执行的等待阶段并不是完全的阻塞的,但是第二个阶段依然处于一个阻塞状态。
同步非阻塞方式相比同步阻塞方式:
- 优点
能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。
- 缺点
任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。
I/O多路复用(select,poll,epol)
单个进程就可以同时处理多个网络连接的IO。它的基本原理就是不再由应用程序自己监视连接,取而代之由内核替应用程序监视文件描述符。
IO复用的优势并不是对于单个连接能处理得更快,而是单个进程就可以同时处理多个网络连接的IO。
IO多路复用是阻塞在select,epoll这样的系统调用之上,而没有阻塞在真正的I/O系统调用
- 优势
与传统的多线程/多进程模型比,I/O多路复用的最大优势是系统开销小,系统不需要创建新的额外进程或者线程,也不需要维护这些进程和线程的运行,降底了系统的维护工作量,节省了系统资源。
- 主要应用场景:
服务器需要同时处理多个处于监听状态或者多个连接状态的套接字;
服务器需要同时处理多种网络协议的套接字,如同时处理TCP和UDP请求;
服务器需要监听多个端口或处理多种服务;
服务器需要同时处理用户输入和网络连接。
信号驱动式I/O
允许Socket进行信号驱动IO,并注册一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个SIGIO信号,可以在信号处理函数中调用I/O操作函数处理数据.阻塞在IO操作的第二阶段
异步I/O模型
上述四种IO模型都是同步的。相对于同步IO,异步IO不是顺序执行。用户进程进行aio_read系统调用之后,就可以去处理其他的逻辑了,无论内核数据是否准备好,都会直接返回给用户进程,不会对进程造成阻塞。等到数据准备好了,内核直接复制数据到进程空间,然后从内核向进程发送通知,此时数据已经在用户空间了,可以对数据进行处理了.
在 Linux 中,通知的方式是 “信号”,分为三种情况:
①、如果这个进程正在用户态处理其他逻辑,那就强行打断,调用事先注册的信号处理函数,这个函数可以决定何时以及如何处理这个异步任务。由于信号处理函数是突然闯进来的,因此跟中断处理程序一样,有很多事情是不能做的,因此保险起见,一般是把事件 “登记” 一下放进队列,然后返回该进程原来在做的事。
②、如果这个进程正在内核态处理,例如以同步阻塞方式读写磁盘,那就把这个通知挂起来了,等到内核态的事情忙完了,快要回到用户态的时候,再触发信号通知。
③、如果这个进程现在被挂起了,例如陷入睡眠,那就把这个进程唤醒,等待CPU调度,触发信号通知。