一文解决TCGA任意肿瘤的差异lncRNA,miRNA,mRNA

解读文献题目:

TCGA based integrated genomic analyses of ceRNA network and novel subtypes revealing potential biomarkers for the prognosis and target therapy of tongue squamous cell carcinoma 这是一篇2019年发表在plos one 的纯生信文章。

摘要

  • 目的 该研究旨在研究舌鳞状细胞癌(TSCC)生物学发展中的ceRNA网络,通过使用基于癌症基因组图谱(TCGA)的整合基因组分析来鉴定TSCC的新分子亚型,以筛选靶向治疗和预后的潜在生物标志物。数据库。
  • 材料与方法 从TCGA和GEO数据库下载基因表达数据。差异表达的RNA(DERNAs)由R中的DESeq2来定义。功能富集分析使用R中的聚集体进行.PPI网络通过参考String网站建立。通过R中的survival包进行DERNA的生存相关分析。从Starbase v3.0数据框获得mRNA,miRNA和lncRNA之间的相互作用并构建ceRNA网络。 Consensus Cluster Plus软件包用于识别分子亚型。通过将它们与GEO微阵列数据进行比较来验证所有关键基因。使用SPSS 22.0对不同亚型的临床特征进行统计分析。
  • 结果 从肿瘤和正常组织中鉴定出总共2907个mRNA(1366个上调和1541个下调),191个miRNA(98个上调和93个下调)和1831个lncRNA(1151个上调和680个下调) 。基于上述的差异RNA成功构建了ceRNA网络,并使用了15个DEmRNA,1个DEmiRNA,2个与预后相关的DElncRNA。
  • 结论 该研究构建了一个ceRNA网络并鉴定了TSCC的分子亚型,我们的研究结果为这种难治性癌症潜在的治疗靶点和预后指标提供了新的标志物。

方法和材料

  • 1.数据收集和预处理 从TCGA数据库(https://portal.gdc.cancer.gov/)获得TSCC的基因表达数据(lncRNA、mRNA和miRNA表达谱数据)和相应的TSCC临床数据,收集126个TSCC样品和13个正常对照样品。在这些数据中,mRNA和lncRNA表达数据是基于Illumina HiSeqRNASeq平台获得的,而miRNA数据是从Illumina HiSeqmiRNASeq平台收集的。

首先对TCGA的RNA表达预处理,筛选掉其中的低表达基因(count<10)进行预处理。根据GENCODE Release 29(GRCh38.p12)(https://www.gencodegenes.org/human/)注释mRNA和lncRNA。 而miRNA是基于miRbase v22数据库(http://www.mirbase.org/index.shtml#opennewwindow)进行注释。

通过搜索“舌鳞状细胞癌”,从Gene Expression Omnibus(GEO)数据库(http://www.ncbi.nlm.nih.gov/geo/)下载TSCC(GSE30784,GSE13601和GSE28100)的3个基因表达谱。 “(2019年1月)。基于Affymetrix Human Genome U133 Plus 2.0 Array和U95 Version 2 Array确定GSE30784和GSE13601。 GSE28100的平台是Agilent-021827人miRNA微阵列(V3)(miRBase释放12.0 miRNA ID版本)。

  • 2.鉴定TSCC中差异表达的mRNA,miRNA和lncRNA 使用R软件的DESeq2包鉴定TSCC样品和正常对照样品中差异表达的lncRNA(DElncRNA),mRNA(DEmRNA),miRNA(DEmiRNA)。将P值设置为FDR, | log2(FC)| > 1.5且P值<0.05被设定为差异基因的阈值。随后根据R的pheatmap包绘制热图。
    1. GO注释和KEGG途径的功能富集分析 R的ClusterProfiler v3.8包用于分析和可视化基因的功能谱(基因本体论(GO)注释和京都基因和基因组百科全书(KEGG)途径)以确定DEmRNA之间的共享功能。 P <0.05被认为是GO和KEGG富集分析的阈值。
  • 4.建立蛋白质 - 蛋白质相互作用(PPI)网络 为了理解DEmRNA的潜在相互作用,STRING网站被用于构建PPI网络,该网络由Cytoscape软件可视化。
  • 5.与预后相关的DEmRNA,DElncRNA和DEmiRNA 通过使用R的survival包进行生存分析以评估差异表达的RNA在TSCC患者中的预后价值。根据每一个DEmRNA,DElncRNA和DEmiRNA的各自表达量数据,将所有样品分成高表达组(大于中位数)或低表达组(小于中位数)。使用Kaplan-Meier方法绘制生存曲线。采用对数秩检验来评估统计学显著性。 P <0.05被认为具有统计学意义。
  • 6.预测lncRNA-miRNA和miRNA-mRNA相互作用 我们通过使用starBase数据库预测DElncRNA和DEmiRNA或DEmRNA和DEmiRNA之间的相互作用,starBase记录了来自许多个测序数据的超过110万个miRNA-ncRNA,250万个miRNA-mRNA和150万个RNA-RNA相互作用。此外,starBase整合了来自miRanda,Targerscan和miRmap数据库的预测结果。只有被记录为负向相关关系的DEmiRNA和DEGs,DElncRNAs和DEmiRNAs被包括在ceRNA网络中。
  • 7.构建ceRNAs网络 根据ceRNA理论,使用Cytoscape软件v3.6.1整合DEmiRNA和DEmRNA以及DE1ncRNA和DEmiRNA的选择的相互作用以构建DElncRNAs-DEmiRNAs-DEmRNAs ceRNA网络。

结果

TSCC中的DElncRNA,DEmiRNA和DEmRNA

总共鉴定出总共2907个差异表达的mRNA(1366个上调和1541个下调),191个miRNA(98个上调和93个下调)和1831个差异表达的lncRNA(1151个上调和680个下调)。 miRNAseq数据| log2(FC)|> 1.5和P值<0.05。 具有差异表达的RNA在热图中可视化(图1)。 表1中列出了前10个DElncRNA,DEmiRNA和DEmRNA。

image.png
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容