java中随机数Random VS ThreadLocalRandom

由于功能改造需要做灰度上线,通过使用权重来控制让一部分流量走原来的逻辑,一部分流量走改造后的逻辑,基于权重的方案需要根据生成的随机数来看落到哪个区间(类似dubbo的基于权重负载均衡),一般比较常见的就是使用Random生成随机数。作为开发人员,习惯性的会考虑到类的并发安全问题和性能,所以会去先去了解一下类。由于项目使用的是jdk7 翻看java jdk关于Random的文档,发现下面这句话:

Instances of java.util.Random are threadsafe. However, the concurrent use of the same java.util.Random instance across threads may encounter contention and consequent poor performance. Consider instead using ThreadLocalRandom in multithreaded designs.

文档上说Random这个类是线程安全的,但是高并发情况下会引起线程竞争性能不好,推荐使用ThreadLocalRandom。为什么多线程下,Random 的性能不佳?因为,它采用了多个线程共享一个 Random 实例。这样就会导致多个线程争用。

官方推荐ThreadLocalRandom!! 看来有必要了解一下。

并发安全

虽然文档说了Random是并发安全的,但还是有必要源码确认一下。Random的实现也比较简单,初始化的时候用当前的事件来初始化一个随机数种子,然后每次取值的时候用这个种子与有些MagicNumber运算,并更新种子。最核心的就是这个next的函数,不管你是调用了nextDouble还是nextInt还是nextBoolean,Random底层都是调这个next(int bits)。

为了保证多线程下每次生成随机数都是用的不同,next()得保证seed的更新是原子操作,所以用了AtomicLong的compareAndSet(),该方法底层调用了sum.misc.Unsafe的compareAndSwapLong(),也就是大家常听到的CAS, 这是一个native方法,它能保证原子更新一个数。可以看出多个线程如果CAS设置失败,会不停的在while循环执行。


看下ThreadLocalRandom文档里怎么说的:

 When applicable, use of ThreadLocalRandom rather than shared Random objects in concurrent programs will typically encounter much less overhead and contention. 

Usages of this class should typically be of the form: ThreadLocalRandom.current().nextX(...) (where X is Int, Long, etc).

大意是并发情况下,使用ThreadLocalRandom能引起更少的线程竞争。也就是性能更好。典型的使用方式是:

ThreadLocalRandom.current().nextX(随机数范围);

看下源码实现:

current实现

跟进localInit方法

next方法实现

跟进nextSeed

看来是通过为每个线程实例化一个随机数生成器,来减少系统开销和对资源的争用。

性能:

使用 JMH 比较 ThreadLocalRandom 和 Random

Random测试代码,

测试结果

ThreadLocalRandom测试代码


测试结果

通过 JMH 的测试结果中可以看出,使用 Random 生成 1000 个随机值所花费的平均时间是 3653 微秒,但使用 ThreadLocalRandom 只花了 2362 微秒,嗯,差距不是很大,但好歹也是有差距的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351