(一)如何解决秒杀的性能问题和超卖的讨论(5)

超卖:任何商品都会有数量上限,如何避免成功下订单买到商品的人数不超过商品数量的上限

二、如何解决

1、前端:

面对高并发的抢购活动,前端常用的三板斧是【扩容】【静态化】【限流】

  A:扩容:加机器,这是最简单的方法,通过增加前端池的整体承载量来抗峰值。

  B:静态化:将活动页面上的所有可以静态的元素全部静态化,并尽量减少动态元素。通过CDN来抗峰值。

    C:限流:一般都会采用IP级别的限流,即针对某一个IP,限制单位时间内发起请求数量。或者活动入口的时候增加游戏或者问题环节进行消峰操作。

      D:有损服务:最后一招,在接近前端池承载能力的水位上限的时候,随机拒绝部分请求来保护活动整体的可用性。

2、后端

  I: 首先MySQL自身对于高并发的处理性能就会出现问题,一般来说,MySQL的处理性能会随着并发thread上升而上升,但是到了一定的并发度之后会出现明显的拐点,之后一路下降,最终甚至会比单thread的性能还要差。

  II: 其次,超卖的根结在于减库存操作是一个事务操作,需要先select,然后insert,最后update -1。最后这个-1操作是不能出现负数的,但是当多用户在有库存的情况下并发操作,出现负数这是无法避免的。

  III:最后,当减库存和高并发碰到一起的时候,由于操作的库存数目在同一行,就会出现争抢InnoDB行锁的问题,导致出现互相等待甚至死锁,从而大大降低MySQL的处理性能,最终导致前端页面出现超时异常。

针对上述问题,如何解决呢? 我们先看眼淘宝的高大上解决方案:

  I:  关闭死锁检测,提高并发处理性能。

  II:修改源代码,将排队提到进入引擎层前,降低引擎层面的并发度(一点不切实际)

  III:组提交降低server和引擎的交互次数,降低IO消耗。

以上内容可以参考丁奇在DTCC2013上分享的《秒杀场景下MySQL的低效》一文。在文中所有优化都使用后,TPS在高并发下,从原始的150飙升到8.5w,提升近566倍,非常吓人!!!

首先设定一个前提,为了防止超卖现象,所有减库存操作都需要进行一次减后检查,保证减完不能等于负数。(由于MySQL事务的特性,这种方法只能降低超卖的数量,但是不可能完全避免超卖

update number setx=x-1 where(x-1)>=0;

解决方案1:

将存库从MySQL前移到Redis中,所有的写操作放到内存中,由于Redis中不存在锁故不会出现互相等待,并且由于Redis的写性能和读性能都远高于MySQL,这就解决了高并发下的性能问题。然后通过队列等异步手段,将变化的数据异步写入到DB中

优点:解决性能问题

缺点:没有解决超卖问题,同时由于异步写入DB,存在某一时刻DB和Redis中数据不一致的风险

解决方案2:

引入队列,然后将所有写DB操作在单队列中排队,完全串行处理。当达到库存阀值的时候就不在消费队列,并关闭购买功能。这就解决了超卖问题。

优点:解决超卖问题,略微提升性能

缺点:性能受限于队列处理机处理性能和DB的写入性能中最短的那个,另外多商品同时抢购的时候需要准备多条队列

解决方案3:

将写操作前移到MC中,同时利用MC的轻量级的锁机制CAS来实现减库存操作。

优点:读写在内存中,操作性能快,引入轻量级锁之后可以保证同一时刻只有一个写入成功,解决减库存问题。

缺点:没有实测,基于CAS的特性不知道高并发下是否会出现大量更新失败?不过加锁之后肯定对并发性能会有影响。

解决方案4:

将提交操作变成两段式,先申请后确认。然后利用Redis的原子自增操作(相比较MySQL的自增来说没有空洞),同时利用Redis的事务特性来发号,保证拿到小于等于库存阀值的号的人都可以成功提交订单。然后数据异步更新到DB中。

优点:解决超卖问题,库存读写都在内存中,故同时解决性能问题。

缺点:由于异步写入DB,可能存在数据不一致。另可能存在少买,也就是如果拿到号的人不真正下订单,可能库存减为0,但是订单数并没有达到库存阀值。

最终解决方案:

我们可以有条件有选择的在读操作上加锁(即在select ...语句最后加上for update),比如可以对库存做一个判断,当库存小于一个量时开始加锁,让购买者排队,这样一来就解决了超卖现象。

三、总结

1、前端三板斧【扩容】【限流】【静态化】

2、后端两条路【内存】+【排队】

https://blog.csdn.net/a_walking_tomcat/article/details/77960203

https://www.cnblogs.com/billyxp/p/3701124.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容

  • 关于Mongodb的全面总结 MongoDB的内部构造《MongoDB The Definitive Guide》...
    中v中阅读 31,920评论 2 89
  • 本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍。之后概...
    团长plus阅读 1,256评论 0 15
  • 本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍。之后概...
    kelgon阅读 61,153评论 23 626
  • 美丽 美丽,是一抹绚丽的色彩,美丽,是一道绮丽的风景,美丽,是一生坚持不懈的追求,有人重视美丽,有人欣赏美丽,...
    安妮儿_d5f8阅读 104评论 0 0
  • 我生性胆小,又有点脆弱,从小没吃过什么苦,也被保护地很好,一直记得妈妈说过的那句“吃亏是福”!我总是尽自己最大的努...
    马小妮Sunny阅读 292评论 0 1