【35】下降路径最小和

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-falling-path-sum/

给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

示例 1:
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:下面是两条和最小的下降路径,用加粗+斜体标注:
[[2,1,3], [[2,1,3],
[6,5,4], [6,5,4],
[7,8,9]] [7,8,9]]

示例 2:
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:下面是一条和最小的下降路径,用加粗+斜体标注:
[[-19,57],
[-40,-5]]

示例 3:
输入:matrix = [[-48]]
输出:-48

提示:

  • n == matrix.length
  • n == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-falling-path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

很明显,此题可以使用动态规划来解决
假设这个矩阵,行为row,列为column,我们使用int[][] dp来记录动态状态转移结果。

先找base condition:

根据题意,是寻找下降路径,所以第一层即为出发层
即:当i == 0时,即在最上面这一行的时候,很明显:dp[i][j] = matrix[i][j]

再找转移方程:

分为三种情况:

  1. 当j == 0时,即在第一列时,因为存在左边界,所以:
    --> dp[i][j] = min(dp[i-1][j], dp[i-1][j+1]) + matrix[i][j]
  2. 当j == column - 1时,因为存在右边界,所以:
    --> dp[i][j] = min(dp[i-1][j-1], dp[i-1][j]) + matrix[i][j]
  3. 剩下则为其他情况:
    --> dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i-1][j+1])) + matrix[i][j]
再找终态:

dp的最下面一层,即为结果,我们只需要找到最小值即可。

代码

    public int minFallingPathSum(int[][] matrix) {
        int row = matrix.length;
        int column = matrix[0].length;
        int[][] dp = new int[row][column];
        // 动态规划
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < column; j++) {
                if (i == 0) {
                    dp[i][j] = matrix[i][j];
                } else if (j == 0) {
                    dp[i][j] = Math.min(dp[i-1][j], dp[i-1][j+1]) + matrix[i][j];
                } else if (j == column - 1) {
                    dp[i][j] = Math.min(dp[i-1][j-1], dp[i-1][j]) + matrix[i][j];
                } else {
                    dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i - 1][j + 1])) + matrix[i][j];
                }
            }
        }
        int min = dp[row-1][0];
        for (int i = 1; i < column; i++) {
            min = Math.min(dp[row-1][i], min);
        }
        return min;
    }

结果

执行结果
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容