Chapter3_神经网络

神经网络

输入层(第0层)->中间层(隐藏层)->输出层(最后一层)

隐藏层的激活函数

  • 将输入信号的总和转换为输出信号.决定如何来激活输入信号的总和
  • 先计算输入信号的加权总和(带偏置),然后用激活函数转换这一总和
    a = b+\omega_1x_1+\omega_2x_2\\ y = h(a)

阶跃函数

以阈值为界,一旦输入超过阈值,就切换输出

#阶跃函数的实现
import numpy as np
def step_function(x):
    y = x > 0
    return y.astype(np.int)
step_function(np.array([-1.0,1.0,2.0]))
array([0, 1, 1])
#绘制阶跃函数的图形
import matplotlib.pylab as plt
x = np.arange(-5.0,5.0,0.1)
y = step_function(x)
plt.plot(x,y)
plt.ylim(-0.1,1.1)#指定y轴的范围
plt.show()
output_4_0.png

sigmoid函数

h(x) = \frac{1}{1+exp(-x)}

#sigmoid函数的实现
def sigmoid(x):
    return 1/(1+np.exp(-x))
x = np.array([-1.0,1.0,2.0])
sigmoid(x)
array([0.26894142, 0.73105858, 0.88079708])
#绘制sigmoid函数的图像
x = np.arange(-5.0,5.0,0.1)
y1 = sigmoid(x)
plt.plot(x,y1)
plt.ylim(-0.1,1.1)
plt.show()
output_7_0.png

ReLU函数

Rectified Linear Unit函数在输入大于0时,直接输出该值;在输入小于等于0时,输出0
h(x)=\begin{cases} x,& \text{$x>0 $}\\ 0,& \text{$x\leq 0 $} \end{cases}

#ReLU函数的实现
def relu(x):
    return np.maximum(0,x)

#绘制ReLU函数的图像
x = np.arange(-5.0,5.0,0.1)
y = relu(x)
plt.plot(x,y)
plt.ylim(-1.0,5.0)
plt.show()
output_9_0.png

输出层的激活函数

一般而言,回归问题用恒等函数,分类问题用softmax函数

  • 恒等函数:将输入按原样输出,对于输入的信息,不加以任何改动的直接输出
  • softmax函数
    y_k=\frac{exp(a_k)}{\sum_{i=1}^nexp(a_i)}
    输出层共有n个神经元,计算第k个神经元的输出y_k
#softmax函数的实现
def softmax(a):
    exp_a = np.exp(a)
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a
    
    return y

softmax函数的注意事项
softmax函数在实现中要进行指数函数的运算,此时指数函数的值很容易变得非常大.超大值之间进行除法运算,会出现"不确定"的情况
改进
y_k = \frac{exp(a)k)}{\sum_{i=1}^nexp(a_i)}=\frac{exp(a_k+C)}{\sum_{i=1}^nexp(a_i+C)}

def softmax(a):
    c = np.max(a)
    exp_a = np.exp(a-c)
    sum_exp_a = np.sum(exp_a)
    y  =exp_a / sum_exp_a
    
    return y
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容