高质量SQL书写建议

1.查询SQL尽量不要使用select *,而是select具体字段。
select * from employee;
正例子:
select id,name from employee;

理由:
只取需要的字段,节省资源、减少网络开销。
select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。

2.如果知道查询结果只有一条或者只要最大/最小一条记录,建议用limit 1

假设现在有employee员工表,要找出一个名字叫jay的人.

CREATE TABLE`employee` (
  `id`int(11) NOTNULL,
  `name`varchar(255) DEFAULTNULL,
  `age`int(11) DEFAULTNULL,
  `date` datetime DEFAULTNULL,
  `sex`int(1) DEFAULTNULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

反例:

select id,name from employee where name='jay'

正例

select id,name from employee where name='jay' limit 1;

理由:
加上limit 1后,只要找到了对应的一条记录,就不会继续向下扫描了,效率将会大大提高。
当然,如果name是唯一索引的话,是不必要加上limit 1了,因为limit的存在主要就是为了防止全表扫描,从而提高性能,
如果一个语句本身可以预知不用全表扫描,有没有limit,性能的差别并不大。
这是为了使EXPLAIN中type列达到const类型

3.应尽量避免在where子句中使用or来连接条件

新建一个user表,它有一个普通索引userId,表结构如下:

CREATE TABLE`user` (
  `id`int(11) NOTNULL AUTO_INCREMENT,
  `userId`int(11) NOTNULL,
  `age`int(11) NOTNULL,
  `name`varchar(255) NOTNULL,
  PRIMARY KEY (`id`),
  KEY`idx_userId` (`userId`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

假设现在需要查询userid为1或者年龄为18岁的用户,很容易有以下sql

反例:

select * from user where userid = 1 or age = 18

正例:

//使用union all
select * from user where userid = 1
unionall
select * from user where age = 18

//或者分开两条sql写:
select * from user where userid = 1
select * from user where age = 18

理由:

使用or可能会使索引失效,从而全表扫描。
对于or+没有索引的age这种情况,假设它走了userId的索引,但是走到age查询条件时,它还得全表扫描,也就是需要三步过程:全表扫描+索引扫描+合并
如果它一开始就走全表扫描,直接一遍扫描就完事。mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引可能失效,看起来也合情合理。

4、优化limit分页

我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。

反例:

select id,name,age from employee limit 10000,10

正例:

//方案一 :返回上次查询的最大记录(偏移量)
select id,name from employee where id > 10000 limit 10

//方案二:orderby + 索引
select id,name from employee order by id limit 10000,10

//方案三:在业务允许的情况下限制页数:

理由:

当偏移量最大的时候,查询效率就会越低,因为Mysql并非是跳过偏移量直接去取后面的数据,而是先把偏移量+要取的条数,然后再把前面偏移量这一段的数据抛弃掉再返回的。

如果使用优化方案一,返回上次最大查询记录(偏移量),这样可以跳过偏移量,效率提升不少。

方案二使用order by+索引,也是可以提高查询效率的。

方案三的话,建议跟业务讨论,有没有必要查这么后的分页啦。因为绝大多数用户都不会往后翻太多页。

5、优化你的like语句

日常开发中,如果用到模糊关键字查询,很容易想到like,但是like很可能让你的索引失效。

反例:

select userId,name from user where userId like'%123';

正例:

select userId,name from user where userId like'123%';

理由:

把%放前面,并不走索引,如下:



把% 放关键字后面,还是会走索引的。如下:


6、使用where条件限定要查询的数据,避免返回多余的行

假设业务场景是这样:查询某个用户是否是会员。曾经看过老的实现代码是这样。。。

反例:

List<Long> userIds = sqlMap.queryList("select userId fromuser where isVip=1");
boolean isVip = userIds.contains(userId);

正例:

Long userId = sqlMap.queryObject("select userId fromuser where userId='userId' and isVip='1'")
boolean isVip = userId!=null;

理由:
需要什么数据,就去查什么数据,避免返回不必要的数据,节省开销。

7、尽量避免在索引列上使用mysql的内置函数

业务需求:查询最近七天内登陆过的用户(假设loginTime加了索引)

反例:

select userId,loginTime from loginuser where Date_ADD(loginTime,Interval 7 DAY) >= now();

正例:

explain select userId,loginTime from loginuser where loginTime >= Date_ADD(NOW(),INTERVAL - 7 DAY);

理由:
索引列上使用mysql的内置函数,索引失效



如果索引列不加内置函数,索引还是会走的。


8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致系统放弃使用索引而进行全表扫

反例:

select * from user where age - 1 = 10;

正例:

select * from user where age = 11;.

理由:
虽然age加了索引,但是因为对它进行运算,索引直接迷路了。。。


9、Inner join 、left join、right join,优先使用Inner join,如果是left join,左边表结果尽量小

Inner join 内连接,在两张表进行连接查询时,只保留两张表中完全匹配的结果集
left join 在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。
right join 在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。
都满足SQL需求的前提下,推荐优先使用Inner join(内连接),如果要使用left join,左边表数据结果尽量小,如果有条件的尽量放到左边处理。

反例:

select * from tab1 t1 left join tab2 t2 on t1.size = t2.size where t1.id > 2;

正例:

select * from (select * from tab1 where id >2) t1 left join tab2 t2 on t1.size = t2.size;

理由:
如果inner join是等值连接,或许返回的行数比较少,所以性能相对会好一点。
同理,使用了左连接,左边表数据结果尽量小,条件尽量放到左边处理,意味着返回的行数可能比较少。

10、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

反例:

select age,name from user where age <> 18;

正例:

//可以考虑分开两条sql写
select age,name from user where age < 18;
select age,name from user where age > 18;

理由:
使用 != 和 <> 很可能会让索引失效


11、使用联合索引时,注意索引列的顺序,一般遵循最左匹配原则。

表结构:(有一个联合索引idx_userid_age,userId在前,age在后)

CREATE TABLE `user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `userId` int(11) NOT NULL,
  `age` int(11) DEFAULT NULL,
  `name` varchar(255) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_userid_age` (`userId`,`age`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8;

反例:

select * from user where age = 10;

正例:

//符合最左匹配原则
select * from user where userid = 10 and age = 10;
//符合最左匹配原则
select * from user where userid =10;


理由:
当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。
联合索引不满足最左原则,索引一般会失效,但是这个还跟Mysql优化器有关的。

  • 对于联合索引来说,要遵守最左前缀法则
    举列来说索引含有字段id、name、school,可以直接用id字段,也可以id、name这样的顺序,但是name;school都无法使用这个索引。所以在创建联合索引的时候一定要注意索引字段顺序,常用的查询字段放在最前面。
12、对查询进行优化,应考虑在 where 及 order by 涉及的列上建立索引,尽量避免全表扫描。

反例:

select * from user where address ='深圳' order by age;

正例:

添加索引
alter table user add index idx_address_age (address,age)
  • 必要时可以使用force index来强制查询走某个索引
    有的时候MySQL优化器采取它认为合适的索引来检索SQL语句,但是可能它所采用的索引并不是我们想要的。这时就可以采用forceindex来强制优化器使用我们制定的索引。
12、对查询进行优化,应考虑在 where 及 order by 涉及的列上建立索引,尽量避免全表扫描。

反例:

select * from user where address ='深圳' order by age;

正例:

添加索引
alter table user add index idx_address_age (address,age)
13、如果插入数据过多,考虑批量插入。

反例:

for(User u :list){
 INSERT into user(name,age) values(#name#,#age#)   
}

正例:

//一次500批量插入,分批进行
insert into user(name,age) values
<foreach collection="list" item="item" index="index" separator=",">
    (#{item.name},#{item.age})
</foreach>

理由:
批量插入性能好,更加省时间
打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500),你可以选择一次运送一块砖,也可以一次运送500,你觉得哪个时间消耗大?


14、在适当的时候,使用覆盖索引。

覆盖索引能够使得你的SQL语句不需要回表,仅仅访问索引就能够得到所有需要的数据,大大提高了查询效率。

反例:

// like模糊查询,不走索引了
select * from user where userid like '%123%

正例:

//id为主键,那么为普通索引,即覆盖索引登场了。
select id,name from user where userid like '%123%';
15、慎用distinct关键字

distinct 关键字一般用来过滤重复记录,以返回不重复的记录。在查询一个字段或者很少字段的情况下使用时,给查询带来优化效果。但是在字段很多的时候使用,却会大大降低查询效率。

反例:

SELECT DISTINCT * from user;

正例:

select DISTINCT name from user;

理由:
带distinct的语句cpu时间和占用时间都高于不带distinct的语句。因为当查询很多字段时,如果使用distinct,数据库引擎就会对数据进行比较,过滤掉重复数据,然而这个比较,过滤的过程会占用系统资源,cpu时间。

16、删除冗余和重复索引

反例:

  KEY `idx_userId` (`userId`)
  KEY `idx_userId_age` (`userId`,`age`)

正例:

//删除userId索引,因为组合索引(A,B)相当于创建了(A)和(A,B)索引
  KEY `idx_userId_age` (`userId`,`age`)

理由:
重复的索引需要维护,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能的。

17、如果数据量较大,优化你的修改/删除语句。

避免同时修改或删除过多数据,因为会造成cpu利用率过高,从而影响别人对数据库的访问。

反例:

//一次删除10万或者100万+?
delete from user where id < 100000;
//或者采用单一循环操作,效率低,时间漫长
for(User user:list){
   delete from user;
}

正例:

//分批进行删除,如每次500
delete user where id < 500
delete product where id >= 500 and id < 1000;

理由:
一次性删除太多数据,可能会有lock wait timeout exceed的错误,所以建议分批操作。

18、where子句中考虑使用默认值代替null。

反例:

select * from user where age is not null;

正例:

//设置0为默认值
select * from user where age > 0;

理由:
并不是说使用了is null 或者 is not null 就会不走索引了,这个跟mysql版本以及查询成本都有关。
如果mysql优化器发现,走索引比不走索引成本还要高,肯定会放弃索引,这些条件!=,is null,is not null经常被认为让索引失效,其实是因为一般情况下,查询的成本高,优化器自动放弃的。
如果把null值,换成默认值,很多时候让走索引成为可能,同时,表达意思会相对清晰一点。

  • 避免在where子句中对字段进行null值判断
    对于null的判断会导致引擎放弃使用索引而进行全表扫描。
19、不要有超过5个以上的表连接

连表越多,编译的时间和开销也就越大。
把连接表拆开成较小的几个执行,可读性更高。
如果一定需要连接很多表才能得到数据,那么意味着糟糕的设计了。

20、exist & in的合理利用

假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工,很容易有以下SQL:

select * from A where deptId in (select deptId from B);

这样写等价于:
先查询部门表B

select deptId from B

再由部门deptId,查询A的员工

select * from A where A.deptId = B.deptId

可以抽象成这样的一个循环:

   List<> resultSet ;
    for(int i=0;i<B.length;i++) {
          for(int j=0;j<A.length;j++) {
          if(A[i].id==B[j].id) {
             resultSet.add(A[i]);
             break;
          }
       }
    }

显然,除了使用in,我们也可以用exists实现一样的查询功能,如下:

select * from A where exists (select 1 from B where A.deptId = B.deptId);

因为exists查询的理解就是,先执行主查询,获得数据后,再放到子查询中做条件验证,根据验证结果(true或者false),来决定主查询的数据结果是否得意保留。

那么,这样写就等价于:

select * from A,先从A表做循环

select * from B where A.deptId = B.deptId,再从B表做循环.

同理,可以抽象成这样一个循环:

   List<> resultSet ;
    for(int i=0;i<A.length;i++) {
          for(int j=0;j<B.length;j++) {
          if(A[i].deptId==B[j].deptId) {
             resultSet.add(A[i]);
             break;
          }
       }
    }

数据库最费劲的就是跟程序链接释放。假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次;相反建立了上百万次链接,申请链接释放反复重复,这样系统就受不了了。即mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优。

因此,我们要选择最外层循环小的,也就是,如果B的数据量小于A,适合使用in,如果B的数据量大于A,即适合选择exist。

21、尽量用 union all 替换 union

如果检索结果中不会有重复的记录,推荐union all 替换 union。

反例:

select * from user where userid = 1
union
select * from user where age = 10

正例:

select * from user where userid = 1
union all
select * from user where age = 10

理由:
如果使用union,不管检索结果有没有重复,都会尝试进行合并,然后在输出最终结果前进行排序。如果已知检索结果没有重复记录,使用union all 代替union,这样会提高效率。

22、索引不宜太多,一般5个以内。

索引并不是越多越好,索引虽然提高了查询的效率,但是也降低了插入和更新的效率。
insert或update时有可能会重建索引,所以建索引需要慎重考虑,视具体情况来定。
一个表的索引数最好不要超过5个,若太多需要考虑一些索引是否没有存在的必要。

  • 如果限制条件中其他字段没有索引,尽量少用or

or两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用union all或者是union(必要的时候)的方式来代替“or”会得到更好的效果。

23、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型

反例:

king_id` varchar(20) NOT NULL COMMENT '守护者Id'

正例:

`king_id` int(11) NOT NULL COMMENT '守护者Id'`

理由:
相对于数字型字段,字符型会降低查询和连接的性能,并会增加存储开销。

24、索引不适合建在有大量重复数据的字段上,如性别这类型数据库字段。

因为SQL优化器是根据表中数据量来进行查询优化的,如果索引列有大量重复数据,Mysql查询优化器推算发现不走索引的成本更低,很可能就放弃索引了。

25、尽量避免向客户端返回过多数据量。

假设业务需求是,用户请求查看自己最近一年观看过的直播数据。

反例:

//一次性查询所有数据回来
select * from LivingInfo where watchId =useId and watchTime >= Date_sub(now(),Interval 1 Y)

正例:

//分页查询
select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit offset,pageSize

//如果是前端分页,可以先查询前两百条记录,因为一般用户应该也不会往下翻太多页,
select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit 200;
26、当在SQL语句中连接多个表时,请使用表的别名,并把别名前缀于每一列上,这样语义更加清晰。

反例:

select * from A inner
join B on A.deptId = B.deptId;

正例:

select memeber.name,deptment.deptName from A member inner
join B deptment on member.deptId = deptment.deptId;
27、尽可能使用varchar/nvarchar 代替 char/nchar。

反例:

  `deptName` char(100) DEFAULT NULL COMMENT '部门名称'

正例:

  `deptName` varchar(100) DEFAULT NULL COMMENT '部门名称'

理由:
因为首先变长字段存储空间小,可以节省存储空间。
其次对于查询来说,在一个相对较小的字段内搜索,效率更高。

28、为了提高group by 语句的效率,可以在执行到该语句前,把不需要的记录过滤掉。

反例:

select job,avg(salary) from employee group by job having job ='president' or job = 'managent'

正例:

select job,avg(salary) from employee where job ='president'
or job = 'managent' group by job;
29、若字段类型是字符串,使用where时一定用引号括起来,否则索引失效

反例:

select * from user where userid = 123;
image.png

正例:

select * from user where userid = '123';
image.png

理由:
为什么第一条语句未加单引号就不走索引了呢?这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为浮点数再做比较。

30、使用explain 分析你SQL的计划

做MySQL优化,善用EXPLAIN查看SQL执行计划。
用explain分析一下你写的SQL,尤其是走不走索引这一块。

explain select * from user where userid = 10086 or age =18;
image.png
  • type列,连接类型。一个好的SQL语句至少要达到range级别。杜绝出现all级别。
  • key列,使用到的索引名。如果没有选择索引,值是NULL。可以采取强制索引方式。
  • key_len列,索引长度。
  • rows列,扫描行数。该值是个预估值。
  • extra列,详细说明。注意,常见的不太友好的值,如下:Using filesort,Using temporary。
31、少用in 或 not in

对于连续的数值范围查询尽量使用BETWEEN AND,例如:

select name from userinfo where id BETWEEN 10 AND 70
  • 注意范围查询语句
    对于联合索引来说,如果存在范围查询,比如between、>、<等条件时,会造成后面的索引字段失效。
32、SQL语句中IN包含的值不应过多

MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。
再例如:select id from t where num in(1,2,3) 对于连续的数值,能用between就不要用in了;再或者使用连接来替换。

33、如果排序字段没有用到索引,就尽量少排序
34、分段查询

在一些用户选择页面中,可能一些用户选择的时间范围过大,造成查询缓慢。主要的原因是扫描行数过多。这个时候可以通过程序,分段进行查询,循环遍历,将结果合并处理进行展示。

如下图这个SQL语句,扫描的行数成百万级以上的时候就可以使用分段查询:


35、避免隐式类型转换

where子句中出现column字段的类型和传入的参数类型不一致的时候发生的类型转换,建议先确定where中的参数类型。

36、关于JOIN优化

LEFT JOIN A表为驱动表,INNER JOIN MySQL会自动找出那个数据少的表作用驱动表,RIGHT JOIN B表为驱动表。

注意:

  • 1)MySQL中没有full join,可以用以下方式来解决:
select * from A left join B on B.name = A.namewhere B.name is nullunion allselect * from B;
  • 2)尽量使用inner join,避免left join:
    参与联合查询的表至少为2张表,一般都存在大小之分。如果连接方式是inner join,在没有其他过滤条件的情况下MySQL会自动选择小表作为驱动表,但是left join在驱动表的选择上遵循的是左边驱动右边的原则,即left join左边的表名为驱动表。

  • 3)合理利用索引:
    被驱动表的索引字段作为on的限制字段。

  • 4)利用小表去驱动大表:



    从原理图能够直观的看出如果能够减少驱动表的话,减少嵌套循环中的循环次数,以减少 IO总量及CPU运算的次数。

  • 5)巧用STRAIGHT_JOIN:
    inner join是由MySQL选择驱动表,但是有些特殊情况需要选择另个表作为驱动表,比如有group by、order by等「Using filesort」、「Using temporary」时。STRAIGHT_JOIN来强制连接顺序,在STRAIGHT_JOIN左边的表名就是驱动表,右边则是被驱动表。在使用STRAIGHT_JOIN有个前提条件是该查询是内连接,也就是inner join。其他链接不推荐使用STRAIGHT_JOIN,否则可能造成查询结果不准确。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容