Layers » 局部连接层 Locally-connected


[source]

LocallyConnected1D

keras.layers.LocallyConnected1D(filters, kernel_size, strides=1, padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

1D 输入的局部连接层。

LocallyConnected1D 层与 Conv1D 层的工作方式相同,除了权值不共享外, 也就是说,在输入的每个不同部分应用不同的一组过滤器。

例子

# 将长度为 3 的非共享权重 1D 卷积应用于
# 具有 10 个时间步长的序列,并使用 64个 输出滤波器
model = Sequential()
model.add(LocallyConnected1D(64, 3, input_shape=(10, 32)))
# 现在 model.output_shape == (None, 8, 64)
# 在上面再添加一个新的 conv1d
model.add(LocallyConnected1D(32, 3))
# 现在 model.output_shape == (None, 6, 32)

参数

  • filters: 整数,输出空间的维度 (即卷积中滤波器的输出数量)。
  • kernel_size: 一个整数,或者单个整数表示的元组或列表, 指明 1D 卷积窗口的长度。
  • strides: 一个整数,或者单个整数表示的元组或列表, 指明卷积的步长。 指定任何 stride 值 != 1 与指定 dilation_rate 值 != 1 两者不兼容。
  • padding: 当前仅支持 "valid" (大小写敏感)。 "same" 可能会在未来支持。
  • activation: 要使用的激活函数 (详见 activations)。 如果你不指定,则不使用激活函数 (即线性激活: a(x) = x)。
  • use_bias: 布尔值,该层是否使用偏置向量。
  • kernel_initializer: kernel 权值矩阵的初始化器 (详见 initializers)。
  • bias_initializer: 偏置向量的初始化器 (详见 initializers)。
  • kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
  • bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。
  • activity_regularizer: 运用到层输出(它的激活值)的正则化函数 (详见 regularizer)。
  • kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
  • bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。

输入尺寸

3D 张量,尺寸为: (batch_size, steps, input_dim)

输出尺寸

3D 张量 ,尺寸为:(batch_size, new_steps, filters)steps 值可能因填充或步长而改变。


[source]

LocallyConnected2D

keras.layers.LocallyConnected2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

2D 输入的局部连接层。

LocallyConnected2D 层与 Conv2D 层的工作方式相同,除了权值不共享外, 也就是说,在输入的每个不同部分应用不同的一组过滤器。

例子

# 在 32x32 图像上应用 3x3 非共享权值和64个输出过滤器的卷积
# 数据格式 `data_format="channels_last"`:
model = Sequential()
model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3)))
# 现在 model.output_shape == (None, 30, 30, 64)
# 注意这一层的参数数量为 (30*30)*(3*3*3*64) + (30*30)*64

# 在上面再加一个 3x3 非共享权值和 32 个输出滤波器的卷积:
model.add(LocallyConnected2D(32, (3, 3)))
# 现在 model.output_shape == (None, 28, 28, 32)

参数

  • filters: 整数,输出空间的维度 (即卷积中滤波器的输出数量)。
  • kernel_size: 一个整数,或者 2 个整数表示的元组或列表, 指明 2D 卷积窗口的宽度和高度。 可以是一个整数,为所有空间维度指定相同的值。
  • strides: 一个整数,或者 2 个整数表示的元组或列表, 指明卷积沿宽度和高度方向的步长。 可以是一个整数,为所有空间维度指定相同的值。
  • padding: 当前仅支持 "valid" (大小写敏感)。 "same" 可能会在未来支持。
  • data_format: 字符串, channels_last (默认) 或 channels_first 之一。 输入中维度的顺序。 channels_last 对应输入尺寸为 (batch, height, width, channels)channels_first 对应输入尺寸为 (batch, channels, height, width)。 它默认为从 Keras 配置文件 ~/.keras/keras.json 中 找到的 image_data_format 值。 如果你从未设置它,将使用 "channels_last"。
  • activation: 要使用的激活函数 (详见 activations)。 如果你不指定,则不使用激活函数 (即线性激活: a(x) = x)。
  • use_bias: 布尔值,该层是否使用偏置向量。
  • kernel_initializer: kernel 权值矩阵的初始化器 (详见 initializers)。
  • bias_initializer: 偏置向量的初始化器 (详见 initializers)。
  • kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
  • bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。
  • activity_regularizer: 运用到层输出(它的激活值)的正则化函数 (详见 regularizer)。
  • kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
  • bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。

输入尺寸

4D 张量,尺寸为: (samples, channels, rows, cols),如果 data_format='channels_first'; 或者 4D 张量,尺寸为: (samples, rows, cols, channels),如果 data_format='channels_last'。

输出尺寸

4D 张量,尺寸为: (samples, filters, new_rows, new_cols),如果 data_format='channels_first'; 或者 4D 张量,尺寸为: (samples, new_rows, new_cols, filters),如果 data_format='channels_last'。 rowscols 的值可能因填充而改变。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容