Python的__hash__函数和__eq__函数

Python的__hash__函数和__eq__函数

可哈希的集合(hashed collections),需要集合的元素实现了__eq____hash__,而这两个方法可以作一个形象的比喻:
哈希集合就是很多个桶,但每个桶里面只能放一个球。
__hash__函数的作用就是找到桶的位置,到底是几号桶。
__eq__函数的作用就是当桶里面已经有一个球了,但又来了一个球,它声称它也应该装进这个桶里面(__hash__函数给它说了桶的位置),双方僵持不下,那就得用__eq__函数来判断这两个球是不是相等的(equal),如果是判断是相等的,那么后来那个球就不应该放进桶里,哈希集合维持现状。

class Foo:
    def __init__(self, item):
        self.item = item

    def __eq__(self, other):
        print('使用了equal函数的对象的id',id(self))
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False
    def __hash__(self):
        print('f'+str(self.item)+'使用了hash函数')
        return hash(self.item)       
f1 = Foo(1)
f2 = Foo(2)
f3 = Foo(3)
fset = set([f1, f2, f3])
print(fset)
print()
f = Foo(3)
fset.add(f)
print('f3的id:',id(f3))
print('f的id:',id(f))

运行结果:

f1使用了hash函数
f2使用了hash函数
f3使用了hash函数
{<__main__.Foo object at 0x0000023769AB67C0>, <__main__.Foo object at 0x0000023769AC5C10>, <__main__.Foo object at 0x0000023769AC5C40>}

f3使用了hash函数
使用了equal函数的对象的id 2437019360320
f3的id: 2437019360320
f的id: 2437019360368

可见,在将f1,f2,f3加入到set中时,每次都会调用一次__hash__函数。
由于我定义的___hash__函数是return hash(self.item),所以f和f3找到的桶的位置是同一个位置,因为它俩的item是相同的。当执行fset.add(f)时,f就会调用它自身的__hash__函数,以找到f所属于的桶的位置。但此时桶里已经有别的球了,所以这时候就得用上__eq__来判断两个对象是否相等,从输出可以看出,是已有对象调用__eq__来和后来的对象进行比较(看对象的id)。
这里如果是删除操作fset.remove(Foo(3)),道理也是一样,先用hash找到桶的位置,如果桶里有球,就判断这两个球是否相等,如果相等就把桶里那个球给扔掉。

官方解释

当可哈希集合(set,frozenset,dict)调用hash函数时,应该返回一个int值。唯一的要求就是,如果判断两个对象相等,那么他们的hash值也应该相等。当比较两个对象相等时是使用对象的成员来比较时,建议要把成员弄进元祖里,再得到这个元祖的hash值来比较。

当class没有定义eq()方法时,那么它也不应该定义hash()方法。如果它定义了eq()方法,却没有定义hash()方法,那么这个类的实例就不能在可哈希集合使用。如果一个类定义了一个可变对象(这里应该是指class的成员之一为可变对象),且implement了eq()方法,那么这个类就不应该implement hash()方法,因为可哈希对象的实现(implement )要求键值key的hash值是不变的(如果一个对象的hash值改变了,那么它会被放在错误的hash桶里)

用户定义的类中都有默认的eqhash方法;有了它,所有的对象实例都是不等的(除非是自己和自己比较),在做x == y比较时是和这个等价的hash(x) == hash(y)。

只实现__eq__(错误示范)

class Foo:
    def __init__(self, item):
        self.item = item

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

f1 = Foo(1)
f2 = Foo(1)
f3 = Foo(1)
print(set([f1, f2, f3]))

运行报错:

Traceback (most recent call last):
  File "c:/Users/Administrator/Desktop/MyFile/MyCoding/Other/hashtest.py", line 14, in <module>
    print(set([f1, f2, f3]))
TypeError: unhashable type: 'Foo'

原链接: Python的hash函数和eq函数

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,367评论 6 512
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,959评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,750评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,226评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,252评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,975评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,592评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,497评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,027评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,147评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,274评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,953评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,623评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,143评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,260评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,607评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,271评论 2 358

推荐阅读更多精彩内容