Flink增量快照

1 概述

Apache Flink是可以进行有状态的流处理,然而,在流处理中什么是状态呢?状态是有过去事件的在内存中的一些操作需要存储,这些存储的信息会影响未来事件的处理。
状态是基础,可以在流出中处理很多比较复杂的场景,如下:

  • 当应用需要搜索一种特定的时间模式,那么就需要保存数据的次序状态;
  • 当聚合每分钟的时间,状态需要保存未完成的聚合信息;
  • 当在线训练一个机器学习模型是,需要当前模型版本的参数。

然而,有状态的流处理只有在状态可以进行容错的时候才可用于生产环境,容错意味着即使出现软件或者硬件故障,计算结果也要保证准确,没有出现数据丢失或者重复计算等情况。

在flink中通过chekpointing来实现容错,checkpoint是一个全局的,提供异步快照机制,定期的对当前应用进行快照并存储到可靠存储上,当出现异常时,flink重启应用,并使用最近完成的checkpoint作为起点。一些用户实际可能保存的状态很大,占用上GB空间,这种情况下checkpoint的创建会非常慢,而且执行时占用的资源也比较多,从而提出incremental checkpointing,即增量方式。
在增量方式之前,每次都是进行全量的checkpoint,但是每次快照都是基于上次的更新,不会很大,所以使用增量方式只要保持上一次与当前的差距即可。

2 示例

当前,可以使用RocksDB来作为增量checkpoint的存储,并在其中不是持续增大,可以进行定期合并清楚历史状态。


increment-checkpoint-example.png

该例子中,子任务的操作是一个keyed-state,一个checkpoint文件保存周期是可配置的,本例中是2,配置方式state.checkpoints.num-retained,上面展示了每次checkpoint时RocksDB示例中存储的状态以及文件引用关系等。

  • 对于checkpoint CP1,本地RocksDB目录包含两个磁盘文件(sstable),它基于checkpoint的name来创建目录。当完成checkpoint,将在共享注册表(shared state registry)中创建两个实体并将其count置为1.在共享注册表中存储的Key是由操作、子任务以及原始存储名称组成,同时注册表维护了一个Key到实际文件存储路径的Map。
  • 对于checkpoint CP2,RocksDB已经创建了两个新的sstable文件,老的两个文件也存在。在CP2阶段,新的两个生成新文件,老的两个引用原来的存储。当checkpoint结束,所有引用文件的count加1。
  • 对于checkpoint CP3,RocksDB的compaction将sstable-(1),sstable-(2)以及sstable-(3)合并为sstable-(1,2,3),同时删除了原始文件。合并后的文件包含原始文件的所有信息,并删除了重复的实体。除了该合并文件,sstable-(4)还存在,同时有一个sstable-(5)创建出来。Flink将新的sstable-(1,2,3)和sstable-(5)存储到底层,sstable-(4)引用CP2中的,并对相应引用次数count加1.老的CP1的checkpoint现在可以被删除,由于其retained已达到2,作为删除的一部分,Flink将所有CP1中的引用文件count减1.
  • 对于checkpoint CP4,RocksDB合并sstable-(4)、sstable-(5)以及新的sstable-(6)成sstable-(4,5,6)。Flink将该新的sstable存储,并引用sstable-(1,2,3),并将sstable-(1,2,3)的count加1,删除CP2中retained到2的。由于sstable-(1), sstable-(2), 和sstable-(3)降到了0,Flink将其从底层删除。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容