Chapter 2.1 实现一个均值滤波器

    本节我们利用tf的一些函数来实现一个最简单的均值滤波器对图片进行滤波,假设图片的大小为16*16*1,设计一个模块来实现均值滤波

首先介绍一下tf.nn.conv2d函数

conv2d(

input,filter,strides,padding,use_cudnn_on_gpu=None,data_format=None,name=None

)

其中input应该为四维tensor: [batch, in_height, in_width, in_channels]

filter为四维tensor:[filter_height, filter_width, in_channels, out_channels]

padding可以选择:‘SAME'也就是使得输入输出W,H不改变。'VALID'指不加padding

关于padding,查看api可以看到,'SAME'的意思并不是说输入输出不变

For the'SAME'padding, the output height and width are computed as:

out_height=ceil(float(in_height)/float(strides[1]))

out_width=ceil(float(in_width)/float(strides[2]))

也就是说与strides有关,而valid是指不加padding

strides强制要求首尾必须为一:[1,s,s,1]


以一个错误为例子,学习conv2d的用法:

想法:输入一个 [1,32,32,3]的全部为4的tensor,滤波器尺寸为[2,2,3,6]其值全部为1,步长为2.

希望输出[1,32,32,,6] 其值全部为1

实际上:输出 [1,16,16,,6] 其值全部为12


问题:

1.关于输出值12 :这里是卷积的运算概念没有掌握,filter为6个 [2,2,3]的滤波器,每一个滤波器应该对3个channel的值进行计算:所以是(0.25*4+0.25*4+0.25*4+0.25*4)*3=0.25*4*4*3=12

2.关于padding:上面也提到了,'SAME’并不表示输入输出w,h一致,而是与步长有关

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • CNN on TensorFlow 本文大部分内容均参考于: An Intuitive Explanation o...
    _Randolph_阅读 7,693评论 2 31
  • TensorFlow从0到N专题入口 当看到本篇时,根据TensorFlow官方标准《Deep MNIST for...
    袁承兴阅读 2,681评论 11 24
  • 其实当初提出建立点评团建议,就是自己在写作上遇到瓶颈,不知道自己哪里需要改进,希望能够得到一些指导。没想到,这个建...
    丘二中阅读 306评论 7 0
  • 文 / 雨林 今年新春,妈妈买了一棵桃花。这是自我记事以来,家里第一次插桃花。 每每有客人来,妈妈都会热络地解释:...
    不新的创造阅读 493评论 0 1
  • 今天听了赵星的一篇文章,讲的是。“我不是有钱,我只是愿意把钱花在这件事上”。有一个同事,每年会花十万甚至20...
    苏小文S阅读 170评论 1 1