代码随想录算法训练营第43天 | 300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组

第九章 动态规划part10

300.最长递增子序列

今天开始正式子序列系列,本题是比较简单的,感受感受一下子序列题目的思路。
文章讲解

思路

  • 注意:子序列是可以跳过几个元素的,不一定下标是连续的,比如

示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

  1. dp[i]的定义
    本题中,正确定义dp数组的含义十分重要。
    dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
  2. 状态转移方程
    位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
    所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
    注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。
    在内循环中,如果 nums[i] > nums[j],我们更新 dp[i] 的值:
dp[i] = max(dp[i], dp[j] + 1);
  • 这一步的意思是,如果 nums[i] 能够接在 nums[j] 之后,我们更新 dp[i] 为 dp[j] + 1 和 dp[i] 的最大值。即我们在考虑所有可能以 nums[j] 结尾且可以接上 nums[i] 的子序列,选出其中最长的一个。
  • 结果更新
    每次内循环结束后,更新全局结果 result,确保记录下目前为止找到的最长递增子序列的长度:
if (dp[i] > result) result = dp[i];
  1. dp[i]的初始化
    每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
  2. 确定遍历顺序
    dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。
    外循环:for (int i = 1; i < nums.size(); i++)
    对每个元素 nums[i],我们考虑它作为子序列的结尾元素。
    内循环:for (int j = 0; j < i; j++)
    对于每个 i,我们检查从 0 到 i-1 的所有元素 nums[j]。
    如果 nums[i] > nums[j],这意味着 nums[i] 可以接在 nums[j] 后面,形成一个更长的递增子序列。
  3. 举例推导dp数组
    输入:[0,1,0,3,2],dp数组的变化如下:


    image.png
class Solution {
    public int lengthOfLIS(int[] nums) {
        int len = nums.length; 
        if(len <= 1) return len;
        int[] dp = new int[len];
        Arrays.fill(dp, 1);
        int result = 0;
        for(int i = 1; i < len; i++){
            for(int j = 0; j < i; j++){
                if(nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j] + 1);
            }
            result = Math.max(dp[i], result);
        }
        return result;
    }
}

674. 最长连续递增序列

本题相对于昨天的动态规划:300.最长递增子序列 最大的区别在于“连续”。 先尝试自己做做,感受一下区别
文章讲解

思路

  • 注意,本题中的子序列是连续的,即是说数组下标连续

动归五部曲

  1. 确定dp数组(dp table)以及下标的含义
    dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]。

  2. 确定递推公式
    如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。
    即:dp[i] = dp[i - 1] + 1;

  3. dp数组如何初始化
    以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。
    所以dp[i]应该初始1;

  4. 确定遍历顺序
    从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

  5. 举例推导dp数组
    已输入nums = [1,3,5,4,7]为例,dp数组状态如下:


    image.png
class Solution {
    public int findLengthOfLCIS(int[] nums) {
        if(nums.length == 0) return 0;
        int[] dp = new int[nums.length];
        Arrays.fill(dp, 1);
        int result = 1;
        for(int i = 1; i < nums.length; i++) {
            if(nums[i] > nums[i - 1]) dp[i] = dp[i - 1] + 1;
            if(dp[i] > result) result = dp[i];
        }
        return result;
    }
}

718. 最长重复子数组

文章讲解

思路

  • 注意题目中说的子数组,其实就是连续子序列。

动归五部曲

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )
    dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。

  2. 确定递推公式
    根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。
    即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
    根据递推公式可以看出,遍历i 和 j 要从1开始!

  3. dp数组如何初始化
    根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
    但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;
    所以dp[i][0] 和dp[0][j]初始化为0。

  4. 确定遍历顺序
    外层for循环遍历A,内层for循环遍历B。

  5. 举例推导dp数组
    拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:


    image.png

滚动数组

image.png

我们可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。

也就是相当于可以把上一层dp[i - 1][j]拷贝到下一层dp[i][j]来继续用。

此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖。

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int len1 = nums1.length;
        int len2 = nums2.length;
        int result = 0;
        int[][] dp = new int[len1 + 1][len2 + 1];
        for(int i = 1; i < len1 + 1; i++){
            for(int j = 1; j < len2 + 1; j++){
                if(nums1[i - 1] == nums2[j - 1]){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                    result = Math.max(dp[i][j], result);
                }
            }
        }
        return result;
    }
}
// 版本二: 滚动数组
class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int[] dp = new int[nums2.length + 1];
        int result = 0;

        for (int i = 1; i <= nums1.length; i++) {
            for (int j = nums2.length; j > 0; j--) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[j] = dp[j - 1] + 1;
                } else {
                    dp[j] = 0;
                }
                result = Math.max(result, dp[j]);
            }
        }
        return result;
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容