Hadoop 3.0新特性

Erasure coding in HDFS

    EC可以通俗的这样理解(并不准确,只是方便理解):传统的 HDFS Replication像RAID 0,数据被简单的复制多份;而EC像RAID5,采用数据+校验码的方式来确保可靠性。

EC的优点

1.更节省存储空间:RS(6+3)只需要1.5倍的磁盘空间就可以获得相同的可靠性,相比传统的Replication 3节省50%存储空间,;

2.并发读写多个DataNode,尤其对小文件的访问更快;

3.数据直接一次性写入(Replication是先写入一个DataNode,再异步复制到其它DataNode中);

EC缺点

1.数据恢复需要耗费更多的CPU、内存和IO,也更耗时(想象一下RAID5磁盘坏掉后的恢复过程……);

2.不(Wu)再(Fa)支持就近读取的策略了(Hadoop:现在动不动就万兆网,就近没那么重要了吧?)

总结

    小于1 block(默认128M)的小文件多,磁盘空间紧张,适合用EC;大文件多适合用Replication。由于EC和Replication都是基于HDFS block的,所以它们并不冲突。Hadoop支持在同一个HDFS Cluster中对不同的文件或目录指定不同的存储策略。

EC是如何解决数据可靠性的问题呢?

    EC本身就是纠偏码的缩写,纠删码技术主要将原始的数据进行编码得到校验,并将数据和校验一并存储起来,以达到容错的目的。其基本思想是将k块原始的数据元素通过一定的编码计算,得到m块校验元素。对于这k+m块元素,当其中任意的m块元素出错(包括数据和校验出错),均可以通过对应的重构算法恢复出原来的k块数据。Hadoop EC采用一种叫做RS(Reed-Solomon encoding)的纠偏码,这种编码方式之前广泛用于通信数据传输中。一般采用6个数据单元+3个校验单元,记为RS(6,3)。

EC数据存储方式:

    HDFS存储数据的最小物理单元是block,默认的block size是128M。传统的顺序存储方式是:将文件顺序写入多个block中。

    例如,一个768M的文件,将被顺序写入6个128M的block中,然后每个block再被异步复制2个副本到其它DataNode中:


顺序存储

    EC采用叫做文件存储的最小物理单元依然是block,但是在block基础上增加了strip和cell的逻辑单元,其中cell就是RS码中的"单元"。6个数据单元(也就是6个cell)+3个校验单元构成一个条(strip)。

    例如,同样一个768M的文件将被分为768个1M大小的逻辑单元cell,每6个cell做RS encoding,生成3个校验cell,这样9个cell构成一个逻辑条(strip),然后依次循环将这些条写入到block中。

EC存储

需要注意的是

1.client会直接并发读写这9个block所在的DataNode;

2.每个条(strip)中的cell必须分配到不同的block中。也就意味着,在RS(6,3)中即使文件再小,也至少占用9个block;

参考

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

https://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/


最低支持Java8,不再支持Java7

YARN Timeline Service v.2(early preview,并不能用)

    相比v.1改进:

1.扩展性增强:读写存储从单实例变为分布式并且将读写分开;

2.增加Flow的概念:我理解类似DAG(有向无环图);

其他改进

重写shell script;

Shaded client jars:屏蔽client jar包,避免client jar与Application classpath中的jar冲突(怎么做到的?);

增加Opportunistic Containers:低优先的container,即使没有资源也可以提交,等待资源空闲下来执行,主要目的是提高yarn集群利用率。

mapreduce性能优化:增加了一个map output collector的本地实现,对于shuffle-intensive jobs可以提升30%以上的性能;

默认端口变更:为了避免和linux临时端口范围 (32768-61000)冲突,修改了部分默认端口号;

增加Microsoft Azure Data Lake和阿里云OSS支持;

Intra-datanode balancer:解决DataNode内部增减磁盘导致的数据倾斜问题,我理解DataNode内部rebalance不用整个集群rebalance了。

YARN 支持自定义扩展Resource Types,比如你可以定义GPU、软件licenses等资源;

HDFS Router-Based Federation增加了a RPC routing layer,多个子集群的超大型集群才用得上,有时间再研究。

Capacity Scheduler queue增加读写Configuration的API;

S3Guard:用不到,懒得看了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容