干货 | 10分钟带你彻底了解column generation(列生成)算法的原理附java代码

OUTLINE

  • 前言
  • 预备知识预警
  • 什么是column generation
  • 相关概念科普
  • Cutting Stock Problem
  • CG求解Cutting Stock Problem
  • 列生成代码
  • reference

00 前言

这几天勤奋的小编一直在精确算法的快乐学习之中不能自拔。到列生成算法这一块,看了好几天总算把这块硬骨头给啃下来了。然后发现网上关于列生成的教学资料也不是很多,大部分讲的不是那么通俗易懂。所以今天就打算写一写这个算法,尽可能写得通俗易懂。

01 预备知识预警

由于列生成算法涉及的知识点非常多,所以在开始之前希望读者必须要具备以下的基础知识,不然就没法往下玩了:

  • 线性规划以及线性规划对偶问题
  • 单纯形法原理
  • 原问题的影子价格(shadow price)以及对偶变量
  • 单纯形法非基变量进基时非基变量检验数(reduce cost)的计算

以上内容我就不展开科普了。如果对这些概念还有不熟悉的小伙伴,一定要回去搞清楚再往下看哦。

Cutting Stock Problem[1]

讲column generation怎么可能少得了Cutting Stock Problem这个经典的问题呢!在开始之前我们将以这个问题为铺垫一步一步往下讲解。

我们有以下问题,原纸卷每个长为L=17m,顾客们分别需要25个3m长,20个5m长,18个7m长的纸卷。那么需要怎样切割才能使得浪费最小呢?

建模

Column Generation Formulation:
对于一卷纸,可以有很多种切割方案。

  • a_{ij} 表示第j种方案里类别i的个数。
  • y_{j}表示第 j 种方案的选择个数。

于是,我们得到如下模型:
min (y_1 +...+y_n) \\ a_{11}y_1+...+a_{1n}y_n \ge 25 \\ a_{21}y_1+...+a_{2n}y_n \ge 20 \\ a_{31}y_1+...+a_{3n}y_n \ge 18 \\ y_i \in Z

从上面的模型中,所有可行的裁剪方案的总数为n,我们并不知道这个值是多少,也不需要知道,只需要知道它很大。并且,随着一卷纸长度的不断增加,n是爆炸式增长的。

总之,可行的裁剪方案非常多,在上面的模型中我们无法显式地把所有裁剪方案给表现出来。

02 什么是column generation?

2.1 相关背景

Column generation 是一种用于求解大规模线性优化问题的非常高效的算法。[3]其理论基础是由Danzig等于1960年提出。本质上而言,列生成算法就是单纯形法的一种形式,是用来求解线性规划问题的。列生成算法已被应用于求解如下著名的NP-hard优化问题:机组人员调度问题(Crew Assignment Problem)、切割问题(Cutting Stock Problem)、车辆路径问题(Vehicle Routing Problem)、单资源工厂选址问题(The single facility location problem )等。

2.2 larger linear programs

在某些线性优化问题的模型中,约束的数目有限,但是变量的数目随着问题规模的增长会爆炸式的增长,因此不能把所有的变量都显性的在模型中表达出来。

比如刚刚介绍的Cutting Stock Problem的模型。随着一卷纸长度的不断增加,行的裁剪方案数量是爆炸式增长的。并且,可行的裁剪方案非常多,在模型中无法显式地把所有裁剪方案给表现出来。

2.3 column generation

单纯型法虽然能保证在数次迭代后找到最优解,但像Cutting Stock Problem这一类的问题,由于变量太多根本无法把所有的变量都显性的在模型中表达出来。所以单纯形法在这里就无能为力了。

再有,在用单纯形法求解这类线性规划问题时,基变量(basic variable)只与约束的个数相关,每次迭代只会有一个新的非基变量(non-basic variable)进基,因此,在整个求解过程中其实只有很少一部分变量会被涉及到。

因此,有人基于单纯型法提出了列生成算法。其思路大概如下:[1]

  1. 先把原问题P_0给restrict到一个规模更小(即变量数比原问题少的)的P_1,在P_1上用单纯型法求最优解,但是此时求得的最优解只是P_1上的,并不是P_0 的最优解。

  2. 此时,就需要通过一个subproblem去check在那些未被考虑的变量中是否有使得reduced cost小于零的?如果有,那么就把这个变量的相关系数列加入到P_1的系数矩阵中,回到第1步。

经过反复的迭代,直到subproblem中的reduced cost rate大于等于零,那么原问题P_0就求到了最优解。

看算法流程图会更加直观哦:[2]

03 相关概念科普

刚刚讲的内容涉及到了几个概念,master problem,linear master problem(LMP),restricted linear master problem,subproblem等,这一节来把这几个概念给讲清楚。还是基于上面的Cutting Stock Problem的模型:
min (y_1 +...+y_n) \\ a_{11}y_1+...+a_{1n}y_n \ge 25 \\ a_{21}y_1+...+a_{2n}y_n \ge 20 \\ a_{31}y_1+...+a_{3n}y_n \ge 18 \\ y_i \in Z

3.1 master problem(MP)

对于一般问题而言,如果要用列生成求解,一般需要重新建模成set covering model。也就是和上面的Cutting Stock Problem类似形式的模型。重新建模成set covering model以后的问题就是master problem了。在Cutting Stock Problem中由于一开始就是建成这种形式,所以其Master Problem就是原模型:
min (y_1 +...+y_n) \\ a_{11}y_1+...+a_{1n}y_n \ge 25 \\ a_{21}y_1+...+a_{2n}y_n \ge 20 \\ a_{31}y_1+...+a_{3n}y_n \ge 18 \\ y_i \in Z

3.2 linear master problem(LMP)

Column generation 是一种用于求解大规模线性优化问题的。而上面的模型中,决策变量是整数,因此要用列生成算法的话,要把整数变量给线性松弛了。得到linear master problem:
min (y_1 +...+y_n) \\ a_{11}y_1+...+a_{1n}y_n \ge 25 \\ a_{21}y_1+...+a_{2n}y_n \ge 20 \\ a_{31}y_1+...+a_{3n}y_n \ge 18 \\ y_i \ge 0

3.2 restricted linear master problem(RLMP)

把LMP给restrict到一个规模更小(即变量数比原问题少的)的就是restricted linear master problem了。比如可以用启发式算法,在上面的linear master problem找出满足条件(也就是形成的restricted linear master problem必须要有能满足LMP所有约束的可行解)的k个列,得到如下的restricted linear master problem:
min (y_1+y_2+...+y_k) \\ a_{11}y_1+...+a_{1k}y_k \ge 25\\ a_{21}y_1+...+a_{2k}y_k \ge 20 \\ a_{31}y_1+...+a_{3n}y_n \ge 18 \\ y_i \ge 0

可以看到,相比原来的linear master problem,restricted linear master problem相当于把y_{k+1}...y_n强制限制为非基变量了。[4]

3.3 subproblem

核能预警,如果这部分看不懂,请确保预备知识过关。如果预备知识不过关,请在运筹学老师的陪同下观看,谢谢合作!

上面的限制主问题求解完成后,我们想使用单纯型法进行基变量的转换,看看y_{k+1}...y_m中,是否有可以转入基变量的列。还记得怎么找进基的非基变量吗?(不记得就去问你们的运筹学老师)。当然是通过非基变量的检验数辣,通过\sigma_j = c_j - c_BB^{-1}a_j,在y_{k+1}...y_m中寻找检验数最小并且为负数的变量,将变量对应的那一列添加到RMP中。

那么,在检验数的计算公式中,大家还记得c_BB^{-1}是什么吗?c_BB^{-1}有两重含义:

  • 通过求解RLMP问题得到的影子价格(shadow price)。
  • 通过求解RLMP对偶问题得到的对偶变量(dual variable)。

所以在开始之前小编一直强调预备知识一定要过关。这两个含义意味着我们有上面两种方式得到c_BB^{-1},不过我们一般倾向于使用第二种,WHY?


虽然通过单纯型法直接求解restricted linear master problem能得到c_BB^{-1}。但是restricted linear master problem也可能是一个变量很多的线性规划。为了加快求解速度,通过单纯型法求restricted linear master problemde的对偶问题(将restricted linear master problem对偶一下,就能使得变量数大幅减小,因为这些变量转换成了对偶问题中的限制条件了),能更快地得到子问题想要的c_BB^{-1}。[1]

所以我们总结一下:
通过求解RLMP问题或者RLMP对偶问题,得到我们想要的c_BB^{-1}以后,subproblem就是通过\sigma_j = c_j - c_BB^{-1}a_j这条公式,在y_{k+1}...y_m中寻找检验数为负并且最小的变量,将变量对应的那一列添加到RLMP中。

3.4 算法流程图

通过上面讲了这么多以后,这里在给出一个更详细的流程图:[5]

04 CG求解Cutting Stock Problem

通过上面的问题分析和建模以后,我们这一步一步一步来求解该问题,让大家彻底理解column generation这个过程。该过程模拟需要用到一个线性求解器,大家还记得小编以前讲过的lpsolve的教程吗?赶紧去翻一下以前的教程,把lpsolveIDE装上,然后跟着小编的脚步一步一步往下走。


4.1 restricted linear master problem(RLMP)

前面我们完成了问题的建模,得到了Cutting Stock Problem的linear Master Problem。现在,我们可以用启发式算法找到一个满足客户需要的初始解:
首先,一个卷筒有三种切割方案:
方案1:切成5个3m
方案2:切成2个6m
方案3:切成2个7m

很容易得出,5个方案1、10个方案2、8个方案3,是能满足所有客户需求的。即得LMP的一个RLMP如下:
min (y_1 +...+y_3) \\ a_{11}y_1+...+a_{13}y_3 \ge 25 \\ a_{21}y_1+...+a_{23}y_3 \ge 20 \\ a_{31}y_1+...+a_{33}y_3 \ge 18 \\ y_i \ge 0
其中,
a_{11} = 5,a_{12} = 0, a_{13} = 0 \\ a_{21} = 0,a_{22} = 2, a_{13} = 0 \\ a_{31} = 0,a_{32} = 0, a_{13} = 2 \\
这三列分别对应着方案1、方案2、方案3。还有一点需要注意的,对于每一列,都需要满足:
3a_{1j} + 6a_{2j}+ 7a_{3j} \le 16,也就是每一卷纸只有16的长度,不能超出这个长度。这个叫列生成规则,不同问题有不同的规则约束。subproblem在寻找某些列或者生成某些列时,就是受到列生成规则的约束的。

4.2 开始列生成过程

iteration 1

RLMP:
min (y_1 +...+y_3) \\ 5y_1+0y_2+0y_3 \ge 25 \\ 0y_1+2y_2+0y_3 \ge 20 \\ 0y_1+0y_2+2y_3 \ge 18 \\ y_i \ge 0
将该模型输入lpsolve,得到对偶变量如下:

得到c_BB^{-1} = [0.2, 0.5, 0.5]。现在要找一列加入RMP,是哪一列呢?现在还不知道,我们暂记为\alpha_4 = [a_{14},a_{24},a_{34}]^T。非基变量检验数\sigma_4 = c_4 - c_BB^{-1}\alpha_4 = 1 - 0.2a_{14}-0.5a_{24}-0.5a_{34}

subproblem:
min (1 - 0.2a_{14}-0.5a_{24}-0.5a_{34}) \\ s.t. 3a_{14} + 6a_{24}+ 7a_{34} \le 16 \\ a_{ij} \in Z
求解结果得\alpha_4 = [1,2,0]^T, \sigma_4= -0.2 < 0,reduced cost 为负数,因此将\alpha_4加入RLMP,开始第二轮迭代。

iteration 2

RLMP:
min (y_1 +...+y_3+y_4) \\ 5y_1+0y_2+0y_3 +1y_4\ge 25 \\ 0y_1+2y_2+0y_3+2y_4 \ge 20 \\ 0y_1+0y_2+2y_3+0y_3 \ge 18 \\ y_i \ge 0
将该模型输入lpsolve,得到对偶变量如下:

得到c_BB^{-1} = [0.2, 0.4, 0.5]。现在要找一列加入RLMP,是哪一列呢?现在还不知道,我们暂记为\alpha_5 = [a_{15},a_{25},a_{35}]^T。非基变量检验数\sigma_5 = c_5 - c_BB^{-1}\alpha_5 = 1 - 0.2a_{15}-0.4a_{25}-0.5a_{35}

subproblem:
min (1 - 0.2a_{15}-0.4a_{25}-0.5a_{35}) \\ s.t. 3a_{15} + 6a_{25}+ 7a_{35} \le16 \\ a_{ij} \in Z
求解结果得\alpha_5 = [1,1,1]^T, \sigma_5= -0.1 < 0,reduced cost 为负数,因此将\alpha_5加入RLMP,开始第三轮迭代。

iteration 3

RMP:
min (y_1 +...+y_3+y_4+y5) \\ 5y_1+0y_2+0y_3 +1y_4+1y_5\ge 25 \\ 0y_1+2y_2+0y_3+2y_4+1y_5 \ge 20 \\ 0y_1+0y_2+2y_3+0y_3 +1y_5\ge 18 \\ y_i \ge 0
将该模型输入lpsolve,得到对偶变量如下:

得到c_BB^{-1} = [0.2, 0.4, 0.4]。现在要找一列加入RLMP,是哪一列呢?现在还不知道,我们暂记为\alpha_6 = [a_{16},a_{26},a_{36}]^T。非基变量检验数\sigma_6 = c_6 - c_BB^{-1}\alpha_6 = 1 - 0.2a_{16}-0.4a_{26}-0.5a_{36}

subproblem:
min (1 - 0.2a_{16}-0.4a_{26}-0.5a_{36}) \\ s.t. 3a_{16} + 6a_{26}+ 7a_{36} \le16 \\ a_{ij} \in Z
求解结果得\alpha_6 = [5,0,0]^T, \sigma_6 = 0,reduced cost 不为负数,因此不用将\alpha_6加入RLMP,列生成算法结束。

最终,我们求解最后一次迭代的RLMP:
min (y_1 +...+y_3+y_4+y_5) \\ 5y_1+0y_2+0y_3 +1y_4+1y_5\ge 25 \\ 0y_1+2y_2+0y_3+2y_4+1y_5 \ge 20 \\ 0y_1+0y_2+2y_3+0y_3 +1y_5\ge 18 \\ y_i \ge 0

得到RLMP的最优解y = [1.2, 0,0,1, 18],这里因为把MP的整数决策变量给线性松弛了,求解的是MP问题的一个lower bound。毕竟列生成是用于求解linear program的。如果要求解大规模整数规划问题,后面我们会介绍结合column generation的branch and price方法。

至此,我们已经完完整整把列生成算法给走了一遍。相信列生成算法的原理已经深入各位读者的心里啦。

05 列生成代码

获取方式

06 reference

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容