Set
不能存放重复元素
接口方法
public interface Set<E> {
void add(E e);
boolean contains(E e);
void remove(E e);
int getSize();
boolean isEmpty();
}
二分搜索树实现
借助前面的二分搜索树,可以很轻松的实现Set
public class BSTSet<E extends Comparable<E>> implements Set<E> {
private BST<E> bst;
public BSTSet() {
bst = new BST<>();
}
@Override
public int getSize() {
return bst.size();
}
@Override
public boolean isEmpty() {
return bst.isEmpty();
}
@Override
public void add(E e) {
bst.add(e);
}
@Override
public boolean contains(E e) {
return bst.contains(e);
}
@Override
public void remove(E e) {
bst.remove(e);
}
}
链表实现
使用前面创建的LinkedListSet
来实现
public class LinkedListSet<E> implements Set<E> {
private LinkedList<E> list;
public LinkedListSet() {
list = new LinkedList<>();
}
@Override
public int getSize() {
return list.getSize();
}
@Override
public boolean isEmpty() {
return list.isEmpty();
}
@Override
public void add(E e) {
if (!list.contains(e))
list.addFirst(e);
}
@Override
public boolean contains(E e) {
return list.contains(e);
}
@Override
public void remove(E e) {
list.removeElement(e);
}
}
时间复杂度分析
编写一个main函数进行测试
import java.util.ArrayList;
public class Main {
private static double testSet(Set<String> set, String filename){
long startTime = System.nanoTime();
System.out.println(filename);
ArrayList<String> words = new ArrayList<>();
if(FileOperation.readFile(filename, words)) {
System.out.println("Total words: " + words.size());
for (String word : words)
set.add(word);
System.out.println("Total different words: " + set.getSize());
}
long endTime = System.nanoTime();
return (endTime - startTime) / 1000000000.0;
}
public static void main(String[] args) {
String filename = "pride-and-prejudice.txt";
BSTSet<String> bstSet = new BSTSet<>();
double time1 = testSet(bstSet, filename);
System.out.println("BST Set: " + time1 + " s");
System.out.println();
LinkedListSet<String> linkedListSet = new LinkedListSet<>();
double time2 = testSet(linkedListSet, filename);
System.out.println("Linked List Set: " + time2 + " s");
}
}
结果
pride-and-prejudice.txt
Total words: 125901
Total different words: 6530
BST Set: 0.1498369 s
pride-and-prejudice.txt
Total words: 125901
Total different words: 6530
Linked List Set: 3.2225657 s
LinkedListSet | BSTSet | |
---|---|---|
增 add | O(n) | O(h) |
查 contains | O(n) | O(h) |
删 remove | O(n) | O(h) |
h表示树的深度, h和n的关系如下:
假设树为满二叉树, 根节点所在的那一层算是第0层
层数 | 节点数 |
---|---|
0层 | 1 |
1层 | 2 |
2层 | 4 |
3层 | 8 |
4层 | 16 |
h-1层 | 2^(h-1) |
这样算下来的话, h层, 共有 2^h-1个结点,
2^h -1 = n ==> h=log₂(n+1)=O(log₂n)=O(logn)
这样算下来,时间复杂度应该是:
LinkedListSet | BSTSet 最优 | |
---|---|---|
增 add | O(n) | O(h) O(logn) |
查 contains | O(n) | O(h) O(logn) |
删 remove | O(n) | O(h) O(logn) |
如果二叉树退化成链表,那么时间复杂度就和链表集合一样了
LinkedListSet | BSTSet - 最优 - 最坏 | |
---|---|---|
增 add | O(n) | O(h) - O(logn) - O(n) |
查 contains | O(n) | O(h) - O(logn) - O(n) |
删 remove | O(n) | O(h) - O(logn) - O(n) |
Map
存储(键, 值)数据对的数据结构, 根据键去寻找值, 可以很轻松的使用链表或者二分搜索树实现
class Node{
K key;
V value;
Node next;
}
class Node{
K key;
V value;
Node left;
Node right;
}
映射的接口类
public interface Map<K, V> {
void add(K key, V value);
V remove(K key);
boolean contains(K key);
V get(K key);
void set(K key, V newValue);
int getSize();
boolean isEmpty();
}
链表实现
需要对节点内容进行修改
public class LinkedListMap<K, V> implements Map<K, V> {
private class Node{
public K key;
public V value;
public Node next;
public Node(K key, V value, Node next){
this.key = key;
this.value = value;
this.next = next;
}
public Node(K key, V value){
this(key, value, null);
}
public Node(){
this(null, null, null);
}
@Override
public String toString(){
return key.toString() + " : " + value.toString();
}
}
private Node dummyHead;
private int size;
public LinkedListMap(){
dummyHead = new Node();
size = 0;
}
@Override
public int getSize(){
return size;
}
@Override
public boolean isEmpty(){
return size == 0;
}
private Node getNode(K key){
Node cur = dummyHead.next;
while(cur != null){
if(cur.key.equals(key))
return cur;
cur = cur.next;
}
return null;
}
@Override
public boolean contains(K key){
return getNode(key) != null;
}
@Override
public V get(K key){
Node node = getNode(key);
return node == null ? null : node.value;
}
@Override
public void add(K key, V value){
Node node = getNode(key);
if(node == null){
dummyHead.next = new Node(key, value, dummyHead.next);
size ++;
}
else
node.value = value;
}
@Override
public void set(K key, V newValue){
Node node = getNode(key);
if(node == null)
throw new IllegalArgumentException(key + " doesn't exist!");
node.value = newValue;
}
@Override
public V remove(K key){
Node prev = dummyHead;
while(prev.next != null){
if(prev.next.key.equals(key))
break;
prev = prev.next;
}
if(prev.next != null){
Node delNode = prev.next;
prev.next = delNode.next;
delNode.next = null;
size --;
return delNode.value;
}
return null;
}
}
二分搜索树实现
修改一下节点内容, 其他的都可以复用二分搜索树中的方法
public class BSTMap<K extends Comparable<K>, V> implements Map<K, V> {
private class Node {
public K key;
public V value;
public Node left, right;
public Node(K key, V value) {
this.key = key;
this.value = value;
left = null;
right = null;
}
}
private Node root;
private int size;
public BSTMap() {
root = null;
size = 0;
}
@Override
public int getSize() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
// 向二分搜索树中添加新的元素(key, value)
@Override
public void add(K key, V value) {
root = add(root, key, value);
}
// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value) {
if (node == null) {
size++;
return new Node(key, value);
}
if (key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if (key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
return node;
}
// 返回以node为根节点的二分搜索树中,key所在的节点
private Node getNode(Node node, K key) {
if (node == null)
return null;
if (key.equals(node.key))
return node;
else if (key.compareTo(node.key) < 0)
return getNode(node.left, key);
else // if(key.compareTo(node.key) > 0)
return getNode(node.right, key);
}
@Override
public boolean contains(K key) {
return getNode(root, key) != null;
}
@Override
public V get(K key) {
Node node = getNode(root, key);
return node == null ? null : node.value;
}
@Override
public void set(K key, V newValue) {
Node node = getNode(root, key);
if (node == null)
throw new IllegalArgumentException(key + " doesn't exist!");
node.value = newValue;
}
// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node) {
if (node.left == null)
return node;
return minimum(node.left);
}
// 删除掉以node为根的二分搜索树中的最小节点
// 返回删除节点后新的二分搜索树的根
private Node removeMin(Node node) {
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
node.left = removeMin(node.left);
return node;
}
// 从二分搜索树中删除键为key的节点
@Override
public V remove(K key) {
Node node = getNode(root, key);
if (node != null) {
root = remove(root, key);
return node.value;
}
return null;
}
private Node remove(Node node, K key) {
if (node == null)
return null;
if (key.compareTo(node.key) < 0) {
node.left = remove(node.left, key);
return node;
} else if (key.compareTo(node.key) > 0) {
node.right = remove(node.right, key);
return node;
} else { // key.compareTo(node.key) == 0
// 待删除节点左子树为空的情况
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
// 待删除节点右子树为空的情况
if (node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
// 待删除节点左右子树均不为空的情况
// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
successor.right = removeMin(node.right);
successor.left = node.left;
node.left = node.right = null;
return successor;
}
}
}
时间复杂度分析
编写一个main函数进行测试
import java.util.ArrayList;
public class Main {
private static double testMap(Map<String, Integer> map, String filename){
long startTime = System.nanoTime();
System.out.println(filename);
ArrayList<String> words = new ArrayList<>();
if(FileOperation.readFile(filename, words)) {
System.out.println("Total words: " + words.size());
for (String word : words){
if(map.contains(word))
map.set(word, map.get(word) + 1);
else
map.add(word, 1);
}
System.out.println("Total different words: " + map.getSize());
System.out.println("Frequency of PRIDE: " + map.get("pride"));
System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
}
long endTime = System.nanoTime();
return (endTime - startTime) / 1000000000.0;
}
public static void main(String[] args) {
String filename = "pride-and-prejudice.txt";
BSTMap<String, Integer> bstMap = new BSTMap<>();
double time1 = testMap(bstMap, filename);
System.out.println("BST Map: " + time1 + " s");
System.out.println();
LinkedListMap<String, Integer> linkedListMap = new LinkedListMap<>();
double time2 = testMap(linkedListMap, filename);
System.out.println("Linked List Map: " + time2 + " s");
}
}
运行结果
pride-and-prejudice.txt
Total words: 125901
Total different words: 6530
Frequency of PRIDE: 53
Frequency of PREJUDICE: 11
BST Map: 0.1996936 s
pride-and-prejudice.txt
Total words: 125901
Total different words: 6530
Frequency of PRIDE: 53
Frequency of PREJUDICE: 11
Linked List Map: 14.6253311 s
时间复杂度和集合类似
LinkedListSet | BSTSet - 最优 - 最坏 | |
---|---|---|
增 add | O(n) | O(h) - O(logn) - O(n) |
删 remove | O(n) | O(h) - O(logn) - O(n) |
改 set | O(n) | O(h) - O(logn) - O(n) |
查 get | O(n) | O(h) - O(logn) - O(n) |
查 contains | O(n) | O(h) - O(logn) - O(n) |