凸优化(七)——牛顿法

〇、说明

凸优化主要学习《凸优化》(Stephen Boyd等著,王书宁等译)[1]这本书。学习过程中,对其内容的理解时有困惑,也参考一些其他书籍资料。笔者尽量将这部分知识整理地简洁明了,成此系列笔记。

如有错误疏漏,烦请指出。如要转载,请联系笔者,hpfhepf@gmail.com。

一、简介

用目标函数的二阶泰勒展开近似该目标函数,通过求解这个二次函数的极小值来求解凸优化的搜索方向。

二、推导

2.1、牛顿法推导

图1[1]

2.2、Hessian范数下的最速下降方法

这从另一个角度揭示了为什么Newton步径是好的搜索方向了。

这里我没有去查找证明过程,我觉得只要知道就可以了,因为这有助于理解最速下降方法(《凸优化(六)——最速下降法》)。

三、优势

在实际应用中,牛顿法往往比梯度下降法有更少的迭代次数。

2.2已经从一个角度说明了Newton步径是好的搜索方向。

知乎问答《最优化问题中,牛顿法为什么比梯度下降法求解需要的迭代次数更少?》[2]这篇也讲了一些,其中,排名第一的引自Wiki的“从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径”,比较有说服力和概括性。

图2[2]

图2形象地说明了牛顿法和梯度下降法的区别,红色为牛顿方法搜索路径,绿色为梯度下降法搜索路径。

四、拟牛顿法

牛顿法需要计算目标函数Hessian矩阵的逆矩阵,运算复杂度太高,计算效率很低,尤其维数很大时。拟牛顿算法的核心思想用一个近似矩阵替代逆Hessian矩阵。

五、等式约束的牛顿法

附录

A、参考

[1]、《凸优化》,Stephen Boyd等著,王书宁等译

[2]、《最优化问题中,牛顿法为什么比梯度下降法求解需要的迭代次数更少?》

B、相关目录

凸优化(一)——概述

凸优化(二)——凸集

凸优化(三)——凸函数

凸优化(四)——问题求解

凸优化(五)——回溯直线搜索

凸优化(六)——最速下降法

凸优化(七)——牛顿法

凸优化(八)——Lagrange对偶问题

C、时间线

2016-08-08 第一次发布

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容