迄今为止最常见从DataFrame获取元素、行和列的数据索引方式:
Dataframe.[];此函数也称为索引运算符。
Dataframe.loc[] :此函数用于标签。
Dataframe.iloc[] :此函数用于基于位置或整数的
Dataframe.ix[] :此函数用于标号和基于整数的函数。
它们统称为索引器。而布尔索引是一种索引类型,它使用DataFrame中数据的实际值。
它们统称为索引器。而布尔索引是一种索引类型,它使用DataFrame中数据的实际值。
根据DataFrame中数据的实际值而不是它们的行/列标签或整数位置来选择数据子集。
在布尔索引中使用布尔向量过滤数据,通过四种方式过滤数据:
使用布尔索引访问DataFrame
将布尔掩码应用于数据帧
基于列值的掩蔽数据
基于索引值的掩蔽数据
使用布尔索引访问DataFrame:
创建一个dataframe,其中的dataframe索引包含一个布尔值。即“True”或“false”。例如
# importing pandas as pdimport pandas as pd# dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["MBA", "BCA", "M.Tech", "MBA"], 'score':[90, 40, 80, 98]} df = pd.DataFrame(dict, index = [True, False, True, False]) print(df)
产出:
借助布尔索引访问数据,使用以下三个函数访问数据文件.loc[], .iloc[], .ix[]
使用布尔索引访问Dataframe.loc[]
为了访问具有布尔索引的数据,使用.loc[],我们只需将布尔值(真或假)传递给.loc[]功能。
# importing pandas as pdimport pandas as pd # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["MBA", "BCA", "M.Tech", "MBA"], 'score':[90, 40, 80, 98]} # creating a dataframe with boolean index df = pd.DataFrame(dict, index = [True, False, True, False]) # accessing a dataframe using .loc[] function print(df.loc[True])
产出:
使用布尔索引访问Dataframe.iloc[]
为了访问数据文件,请使用.iloc[],我们必须在iloc[]功能但iloc[]函数只接受整数作为参数,因此它将引发一个错误,因此我们只能在将整数传递给iloc[]功能代码1:
# importing pandas as pdimport pandas as pd # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["MBA", "BCA", "M.Tech", "MBA"], 'score':[90, 40, 80, 98]} # creating a dataframe with boolean index df = pd.DataFrame(dict, index = [True, False, True, False]) # accessing a dataframe using .iloc[] function print(df.iloc[True])
产出:
TypeError
代码2:
# importing pandas as pdimport pandas as pd # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["MBA", "BCA", "M.Tech", "MBA"], 'score':[90, 40, 80, 98]} # creating a dataframe with boolean index df = pd.DataFrame(dict, index = [True, False, True, False]) # accessing a dataframe using .iloc[] functionprint(df.iloc[1])
产出:
使用布尔索引访问Dataframe.ix[]
为了访问数据文件,请使用.ix[],我们必须将布尔值(真或假)和整数值传递给.ix[]因为我们知道.ix[]函数是.loc[]和.iloc[]功能。代码1:
# importing pandas as pdimport pandas as pd # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["MBA", "BCA", "M.Tech", "MBA"], 'score':[90, 40, 80, 98]} # creating a dataframe with boolean indexdf = pd.DataFrame(dict, index = [True, False, True, False]) # accessing a dataframe using .ix[] functionprint(df.ix[True])
产出:
代码2:
# importing pandas as pdimport pandas as pd # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["MBA", "BCA", "M.Tech", "MBA"], 'score':[90, 40, 80, 98]} # creating a dataframe with boolean index df = pd.DataFrame(dict, index = [True, False, True, False]) # accessing a dataframe using .ix[] functionprint(df.ix[1])
产出:
将布尔掩码应用于dataframe:
应用一个布尔掩码,它将只打印传递布尔值True的数据,使用__getitems__或[]访问。
用dataframe中包含的长度相同的真假列表来应用布尔掩码,
代码1:
# importing pandas as pdimport pandas as pd # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["MBA", "BCA", "M.Tech", "MBA"], 'score':[90, 40, 80, 98]} df = pd.DataFrame(dict, index = [0, 1, 2, 3]) print(df[[True, False, True, False]])
产出:
代码2:
# importing pandas packageimport pandas as pd # making data frame from csv filedata = pd.read_csv("nba1.1.csv") df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) df[[True, False, True, False, True, False, True, False, True, False, True, False, True]]
产出:
基于列值的掩蔽数据:在dataframe中,使用不同的运算符(如==, >, <, <=, >=)根据列值对数据进行过滤。
代码1:
# importing pandas as pdimport pandas as pd # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["BCA", "BCA", "M.Tech", "BCA"], 'score':[90, 40, 80, 98]} # creating a dataframe df = pd.DataFrame(dict) # using a comparison operator for filtering of dataprint(df['degree'] == 'BCA')
产出:
代码2:
# importing pandas packageimport pandas as pd # making data frame from csv filedata = pd.read_csv("nba.csv", index_col ="Name") # using greater than operator for filtering of dataprint(data['Age'] > 25)
产出:
打开UC浏览器 查看更多精彩图片
基于索引值的掩蔽数据:在dataframe中,使用不同的运算符创建基于索引值的掩码 ==, >, <
代码1:
# importing pandas as pdimport pandas as pd # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"], 'degree': ["BCA", "BCA", "M.Tech", "BCA"], 'score':[90, 40, 80, 98]} df = pd.DataFrame(dict, index = [0, 1, 2, 3]) mask = df.index == 0 print(df[mask])
产出:
代码2:
# importing pandas packageimport pandas as pd # making data frame from csv filedata = pd.read_csv("nba1.1.csv") # giving a index to a dataframedf = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) # filtering data on index valuemask = df.index > 7 df[mask]
产出: