Breakthroughs in the development of high throughput technologies for profiling transcriptomes at the single-cell level have helped biologists to understand the heterogeneity of cell populations disease states and developmental lineages.However thse single cell RNA sequencing technologies generate an extraordinary amout of data, which creates analysis and interpretation challenges.Additionally,scRNA-seq datasets often contain technical sources of moise owing to incomplete RNA cature PCR amplofication biases and batch effects specific to the patient or sample.If no addressed this technical noise can bias the analysis and inerpretation of the data. In tespomse to the se challenges ,a suite of computational tools has been developed to process analyse and visualize scRNA-seq datasets.Although the specific steps of any given scRNA-seq analysis might differ depending on the biological questions being asked,a core workflow is used in most analysis.Tyoically,raw sequencing reads are precessed into a gene expression matrix that is then normalized and scaled to remove technical noise. Next cells are grouped according to similarities in their patterns of gene expression,which can be summarized in two or three dimensions for visualization on a scatterplet. These data can then be further analysed to procide an in-depth view of the cell types or decelopmental trajectories in the sample if interest.
单细胞水平转录组分析高通量技术的发展突破,帮助生物学家了解细胞群体、疾病状态和发育谱系的异质性。然而,这些单细胞RNA测序技术产生了大量的数据,这给分析和解释带来了挑战。此外,由于不完整的RNA捕获PCR扩增偏差和特定于患者或样本的批量效应,scRNA-seq数据集通常包含moise的技术来源。如果不解决,这种技术噪音会使数据的分析和解释产生偏差。为了应对se挑战,已经开发了一套计算工具来处理、分析和可视化scRNA-seq数据集。尽管任何给定的scRNA-seq分析的具体步骤可能因所问的生物学问题而有所不同,但在大多数分析中使用的是核心工作流程。通常,原始的测序序列被放入基因表达矩阵,然后被标准化和缩放以消除技术噪音。下一个细胞根据其基因表达模式的相似性进行分组,这些相似性可以在散点上以二维或三维的形式进行总结。如果感兴趣,这些数据可以进一步分析,以提供对样品中细胞类型或发育轨迹的深入观察。