Spark计算《西虹市首富》短评词云

本文主要记录利用爬虫爬取豆瓣对电影《西虹市首富》的短评,使用word分词器分词,并使用Spark计算出磁盘取Top20,使用echats展示。

效果图如下:


相关文章:
1.Spark之PI本地
2.Spark之WordCount集群
3.SparkStreaming之读取Kafka数据
4.SparkStreaming之使用redis保存Kafka的Offset
5.SparkStreaming之优雅停止
6.SparkStreaming之写数据到Kafka
7.Spark计算《西虹市首富》短评词云

1.爬取数据

参考:使用爬虫爬取豆瓣电影影评数据Java版

其中略微修改:
PageParser.java

public Data<T> parse(String url, String html) {

  Document doc = Jsoup.parse(html, url);

  // 获取链接列表
  List<String> links =
    doc.select("#paginator > a.next")
    .stream()
    .map(a -> a.attr("abs:href"))
    .collect(Collectors.toList());

  // 获取数据列表
  List<Map<String, Object>> results = doc.select("#comments > div.comment-item")
    .stream()
    .map(div -> {
      Map<String, Object> data = new HashMap<>();

      String author = div.selectFirst("h3 > span.comment-info > a").text();
      String date = div.selectFirst("h3 > span.comment-info > span.comment-time").text();
      Element rating = div.selectFirst("h3 > span.comment-info > span.rating");
      String star = "0";
      if (rating != null) {
        // allstar40 rating
        star = rating.attr("class");
        star = star.substring(7, 9);
      }
      String vote = div.selectFirst("h3 > span.comment-vote > span.votes").text();
      String comment = div.selectFirst("div.comment > p").text();

      data.put("author", author);
      data.put("date", date);
      if (star != null)
        data.put("star", star);
      data.put("vote", vote);
      data.put("comment", comment);

      return data;
    })
    .collect(Collectors.toList());

  return new Data(links, results);
}

DataProcessor.java

public void process(List<T> results) {
  if (results == null || results.isEmpty()) {
    return;
  }

  try {

    // 数据
    BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(new File("C:\\xhs_json.txt"), true)));
    Gson gson = new Gson();
    for (T result : results) {
      bw.write(gson.toJson(result));
      bw.write("\r\n");
    }
    bw.flush();
    bw.close();

    // 分词结果
    PrintWriter pw = new PrintWriter(new OutputStreamWriter(new FileOutputStream(new File("C:\\xhs_word.txt"), true)));
    for (T result : results) {
      if (result instanceof Map) {
        List<Word> words = WordSegmenter.seg(((Map) result).get("comment").toString());
        pw.println(words.stream().map(word -> word.getText()).collect(Collectors.joining(" ")));
      }
    }
    pw.flush();
    pw.close();
  } catch (Exception e) {
    e.printStackTrace();
  }

}

大概540条数据,保存两份文件,xhs_json.txt是完整的短评json文件,xhs_word.txt是使用word对短评内容分词的文件

xhs_json.txt
xhs_word.txt

爬虫下载地址
xhs_json.txt下载地址
xhs_word.txt下载地址

2.Spark计算

只需要利用xhs_word.txt文件进行wordcount计算即可,然后打印出echat需要显示的格式即可

object YingPing {
  def main(args: Array[String]): Unit = {
    //创建一个Config
    val conf = new SparkConf()
      .setAppName("YingPing")
      .setMaster("local[1]")

    //核心创建SparkContext对象
    val sc = new SparkContext(conf)

    //WordCount
    sc.textFile("C:\\xhs_word.txt")
      .flatMap(_.split(" "))
      .map((_, 1))
      .reduceByKey(_ + _)
      //.repartition(1)
      .sortBy(_._2, false)
      .take(20)
      .map(x => {
        val map = new java.util.HashMap[String, String]()
        map.put("name", x._1)
        map.put("value", x._2 + "")
        map.put("itemStyle", "createRandomItemStyle()")
        map
      })
      .foreach(item => println(new Gson().toJson(item).replace("\"c", "c").replace(")\"", ")") + ","))
    // 借助http://echarts.baidu.com/echarts2/doc/example/wordCloud.html#infographic可以显示词云

    //停止SparkContext对象
    sc.stop()
  }
}

结果如下:

{"name":"电影","itemStyle":createRandomItemStyle(),"value":"160"},
{"name":"麻花","itemStyle":createRandomItemStyle(),"value":"112"},
{"name":"喜剧","itemStyle":createRandomItemStyle(),"value":"100"},
{"name":"开心","itemStyle":createRandomItemStyle(),"value":"96"},
{"name":"沈腾","itemStyle":createRandomItemStyle(),"value":"92"},
{"name":"笑点","itemStyle":createRandomItemStyle(),"value":"92"},
{"name":"笑","itemStyle":createRandomItemStyle(),"value":"79"},
{"name":"真的","itemStyle":createRandomItemStyle(),"value":"50"},
{"name":"好笑","itemStyle":createRandomItemStyle(),"value":"49"},
{"name":"一部","itemStyle":createRandomItemStyle(),"value":"47"},
{"name":"故事","itemStyle":createRandomItemStyle(),"value":"47"},
{"name":"讽刺","itemStyle":createRandomItemStyle(),"value":"45"},
{"name":"太","itemStyle":createRandomItemStyle(),"value":"44"},
{"name":"尴尬","itemStyle":createRandomItemStyle(),"value":"40"},
{"name":"星","itemStyle":createRandomItemStyle(),"value":"39"},
{"name":"尬","itemStyle":createRandomItemStyle(),"value":"37"},
{"name":"夏洛特","itemStyle":createRandomItemStyle(),"value":"34"},
{"name":"观众","itemStyle":createRandomItemStyle(),"value":"33"},
{"name":"金钱","itemStyle":createRandomItemStyle(),"value":"33"},
{"name":"挺","itemStyle":createRandomItemStyle(),"value":"33"},

将结果复制到echats的在线页面显示即可

image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容