由 reads count 数计算 TPM 和FPKM

reads count数计算TPMFPKM
下载gff文件
http://venanciogroup.uenf.br/cgi-bin/gmax_atlas/download_by_pub.cgi去这里下载
reads count 数据

library("GenomicFeatures")
library("dplyr")
path1 = setwd("C:/Users/95656/Desktop/hyp/TZX/")
setwd(path1)
# 计算基因length

gffpath = "Gmax_275_Wm82.a2.v1.gene.gff3"
print(gffpath)
txdb <- makeTxDbFromGFF(gffpath,format="gff")
exons_gene <- exonsBy(txdb, by = "gene")
exons_gene_lens <- lapply(exons_gene,function(x){sum(width(reduce(x)))})
length1 = t(as.data.frame(exons_gene_lens))
write.table(length1,"C:/Users/95656/Desktop/hyp/TZX/length.txt", sep = "\t")

# 合并 reads count 数据和length
length1 = read.table("C:/Users/95656/Desktop/hyp/TZX/length.txt", header = T,sep="\t")
countsfile = "C:/Users/95656/Desktop/hyp/TZX/PRJNA238493_BP_raw_count.expression.tsv"
count1 = read.table(countsfile, header = T, sep = "\t")
a = inner_join(count1, length1, by="Locus_Name")
a[is.na(a)] = 0 # 设置 NA值为0
a = a[, -28]  # 删除第28列  Locus_Name.1
write.table(a,"C:/Users/95656/Desktop/hyp/TZX/countsdata.txt", sep = "\t", row.names = FALSE)

# 按照对应关系给countdata columns 改名,改好的文件保存为 re_countsdata.txt
# {'SAMN02644800': 'root', 'SAMN02644811': 'leaf3', 'SAMN02644826': 'seed4', 'SAMN02644825': 'seed3', 'SAMN02644822': 'podseed3', 'SAMN02644821': 'podseed2', 'SAMN02644820': 'podseed1', 'SAMN02644803': 'stem1', 'SAMN02644806': 'leafbud1', 'SAMN02644804': 'stem2', 'SAMN02644813': 'flower2', 'SAMN02644814': 'flower3', 'SAMN02644816': 'flower5', 'SAMN02644815': 'flower4', 'SAMN02644817': 'pod1', 'SAMN02644823': 'seed1', 'SAMN02644818': 'pod2', 'SAMN02644819': 'pod3', 'SAMN02644824': 'seed2', 'SAMN02644809': 'leaf1', 'SAMN02644807': 'leafbud2', 'SAMN02644802': 'cotyledon2', 'SAMN02644810': 'leaf2', 'SAMN02644805': 'shoot meristem', 'SAMN02644812': 'flower1', 'SAMN02644827': 'seed5'}

# 计算 TPM 和 FPKM

setwd("C:/Users/95656/Desktop/hyp/TZX/")
countfile = "C:/Users/95656/Desktop/hyp/TZX/re_countsdata.txt"
mycounts<-read.table(countfile, header = T,sep="\t")
head(mycounts)
rownames(mycounts)<-mycounts[,1]
mycounts<-mycounts[,-1]
head(mycounts)
# TPM
kb <- mycounts$length / 1000
countdata <- mycounts[,1:26]
rpk <- countdata / kb
tpm <- t(t(rpk)/colSums(rpk) * 1000000)
head(tpm)
write.table(tpm,file="my_TPM.txt",sep="\t",quote=F)
# FPKM
fpkm <- t(t(rpk)/colSums(countdata) * 10^6)
head(fpkm)
write.table(fpkm,file="my_FPKM.txt",sep="\t",quote=F)


## FPKM转化为TPM
# fpkm_to_tpm = t(t(fpkm)/colSums(fpkm))*10^6
# head(fpkm_to_tpm)

计算 共表达相关性

path1 = "C:\\Users\\95656\\Desktop\\hyp\\比较"
setwd(path1)
rowdata <- read.table(choose.files(),header=T,sep="\t")
# exp1 = rowdata[,5:]
# "cotyledon1", "leafbud3",
exp1 = rowdata[c("cotyledon2", "flower1", "flower2", "flower3", "flower4", "flower5", "leaf1", "leaf2", "leaf3", "leafbud1", "leafbud2", "pod1", "pod2", "pod3", "podseed1", "podseed2", "podseed3", "root", "seed1", "seed2", "seed3", "seed4", "seed5", "shootmeristem", "stem1", "stem2")]
rownames(exp1)<-rowdata$Name
exp1[is.na(exp1)] = 0 # 设置 NA值为0
exp1 = as.matrix(exp1)
geneid <- rowdata[,'Name']
TCP = geneid[1:5] 
Gma = geneid[1:5]
outfile = choose.files()
for(i in 1:length(TCP))
{
    for(j in 1:length(Gma))
    {
        x <- as.numeric(exp1[i,])
        y <- as.numeric(exp1[j,])
        if(sum(exp1[i,])*sum(exp1[j,]) != 0)#取出表达值都为0的行,如果要严格一点,想要把表达值出现0的行都去掉的话可以把求和函数sum()换成求积函数prod(x)
        {
            gene_cor <- cor.test(x,y,alternative = "two.sided",method = "pearson")
            gene_p <- gene_cor$p.value
            gene_e <- gene_cor$estimate
            if(abs(gene_e) >= 0 && gene_p <= 1)
            {
                res<-paste(TCP[i],Gma[j],gene_e,gene_p,sep="\t")
                write.table(res, outfile,sep="\t",col.names=F,row.names=F,quote=F,append=T)
            }
        }else{
            print("something is error")
        }
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容