R语言相关性检验函数2021.3.11

1. 相关性检验

得出相关系数我们并不一定能得出数据之间的相关水平,这时候我们会进行相关性检验来进行量化。
置信区间:confidence interval,是指由由样本统计量所构成的总体参数的估计区间。在统计学中,一个概率样本的置信区间是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度。简单来说就是只有概率还不行,还得知道概率发生的范围。例如,如果在一次大选中某人的支持率为55%,而置信水平0.95以上的置信区间是(50%,60%),那么他的真实支持率有百分之九十五的机率,落在百分之五十和百分之六十之间,因此他的真实支持率不足一半的可能性小于百分之5。

1.1 单组检验(cor.test函数)

cor.test函数每次只能检测一组变量。它有四个重要的参数,x和y是需要检测的相关性的变量,alternative参数指明是进行两边检验(two.sided)或正相关检验(greater)或负相关检验(less)。method参数选择算法(Pearson、Spearman、Kendall)

cor.test(state.x77[,3],state.x77[,5]) #检验state.x77数据集的第三列和第五列的相关性
图1 cor.test函数检验结果

1.2 多组变量检验(corr.test函数)

psych包中的corr.test可以一次性检验多组变量,可以递归计算整个数据集。

library(psych)#载入包
corr.test(state.x77)#计算各列之间的相关系数和相关性检验

该函数不仅计算了相关系数,而且计算了相关性检验的值


图2 corr.test函数检验结果

1.3 偏相关检验(pcor.test函数)

偏相关

library(ggm)
x<-pcor(c(1,5,2,3,6),cov(state.x77))
pcor.test(x,3,50)
图3 pcor.test函数检验结果

1.4 分组数据的相关性检验(t.test函数)

1.4.1 两组数据

t检验适用于样本含量较小,总体方差未知的正态分布数据
UScrime数据集是美国七个州的刑罚制度对犯罪率影响的数据集。
t检验使用t.test()函数,格式为y~x,其中y是数值型变量,x是二分型变量。波浪线后面是分组变量,南方和北方分成两组,做了t检验。

library(MASS)#加载数据集
UScrime
t.test(Prob~So,data=UScrime)#通过So列进行分组,对Prob列数据进行t检验
图4 t.test函数检验结果

1.4.2 多于两组数据

如果想在多余两个组的数据中进行比较,数据符合正态分布我们就用方差分析,如果不符合正态分布则用非参数的方法。在相关性检验中,我们可以用参数方法和非参数 方法。统计分析方法包括参数检验和非参数检验,

  • 参数检验:参数检验,Parametric tests,是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。也就是数据分布已知,比如满足正态分布。
  • 非参数检验:称为Nonparametric tests,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容