SparkSQL常用操作

 1、从json文件创建dataFrame

val df: DataFrame = sqlContext.read.json("hdfs://master:9000/user/spark/data/people.json")

val people = df.registerTempTable("person")

val teenegers: DataFrame = sqlContext.sql("select name,age from person")

teenegers.map(x => "name:" + x(0)+ " " + "age:" + x(1)).collect().foreach(println)

2、从parquet文件创建dataFrame

val df: DataFrame = sqlContext.read.parquet("hdfs://master:9000/user/spark/data/namesAndAges.parquet")

val people = df.registerTempTable("person")

val teenegers: DataFrame = sqlContext.sql("select name,age from person")

teenegers.map(x => "name:" + x(0)+ " " + "age:" + x(1)).collect().foreach(println)

3、从普通RDD创建dataFrame_1

val people = sc.textFile("hdfs://master:9000/user/spark/data/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF

people.registerTempTable("people")

val teenagers = sqlContext.sql("select name,age from people")

teenagers.map(x => "name:" + x(0)+ " " + "age:" + x(1)).collect().foreach(println)

4、从普通RDD创建dataFrame_2

val people = sc.textFile("hdfs://master:9000/user/spark/data/people.txt")

val schemaString = "name age"

import org.apache.spark.sql.Row

import org.apache.spark.sql.types.{StructType,StructField,StringType}

val schema = StructType(schemaString.split(" ").map(fieldName => StructField(fieldName,StringType,true)))

val rowRDD = people.map(_.split(",")).map(x => Row(x(0),x(1).trim))

val df: DataFrame = sqlContext.createDataFrame(rowRDD,schema)

df.registerTempTable("people")val teenagers = sqlContext.sql("select name,age from people")

teenagers.map(x => "name:" + x(0)+ " " + "age:" + x(1)).collect().foreach(println)

5、测试dataframe的read和save方法(注意load方法默认是加载parquet文件)

val df = sqlContext.read.load("hdfs://master:9000/user/spark/data/namesAndAges.parquet")

df.select("name").write.save("hdfs://master:9000/user/spark/data/name.parquet")

6、测试dataframe的read和save方法(可通过手动设置数据源和保存测mode)

val df =sqlContext.read.format("json").load("hdfs://master:9000/user/spark/ data/people.json")

df.select("age").write.format("parquet").mode(SaveMode.Append).save("hdfs://master:9000/user/spark/data/ages.parquet")

7、直接使用sql查询数据源

val df = sqlContext.sql("SELECT * FROM parquet.`hdfs://master:9000/user/spark/data/ages.parquet`")

df.map(x => "name:" + x(0)).foreach(println)

8、parquest文件的读写

val people = sc.textFile("hdfs://master:9000/user/spark/data/people.txt").toDF

people.write.mode(SaveMode.Overwrite).parquet("hdfs://master:9000/user/spark/data/people.parquet")

val parquetFile = sqlContext.read.parquet("hdfs://master:9000/user/spark/data/people.parquet")

parquetFile.registerTempTable("parquetFile")

val teenagers = sqlContext.sql("SELECT name FROM parquetFile")

teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

9、Schema Merging

val df1 = sc.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double")

df1.write.mode(SaveMode.Overwrite).parquet("hdfs://master:9000/user/spark/data/test_table/key=1")

df2 = sc.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")

df2.write.mode(SaveMode.Overwrite).parquet("hdfs://master:9000/user/spark/data/test_table/key=2")

df3 = sqlContext.read.option("mergeSchema", "true").parquet("hdfs://master:9000/user/spark/data/test_table")

df3.printSchema()

df3.show()

10、hive metastore

val sqlContext = new HiveContext(sc)sqlContext.setConf("spark.sql.shuffle.partitions","5")

sqlContext.sql("use my_hive")

sqlContext.sql("create table if not exists sogouInfo (time STRING,id STRING,webAddr STRING,downFlow INT,upFlow INT,url STRING) row format delimited fields terminated by '\t'")

sqlContext.sql("LOAD DATA LOCAL INPATH '/root/testData/SogouQ1.txt' overwrite INTO TABLE sogouInfo")

sqlContext.sql("select " +"count(distinct id) as c " +"from sogouInfo " +"group by time order by c desc limit 10").collect().foreach(println)

11、df from jdbc eg:mysql

val sqlContext = new SQLContext(sc)

val jdbcDF = sqlContext.read.format("jdbc").options(Map("driver" -> "com.mysql.jdbc.Driver","url" -> "jdbc:mysql://192.168.0.65:3306/test?user=root&password=root","dbtable" -> "trade_total_info_copy")).load()

jdbcDF.registerTempTable("trade_total_info_copy")

sqlContext.sql("select * from trade_total_info_copy").foreach(println)


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容