讲解:Sample Prediction、data、R、RSQL|SQL

Exercise - LR and Out of Sample PredictionGenerate 99 independent variables uniformly distributed between -100 and 100 of size 100 observations each.Generate the dependent variable y = 3 + 10*V99, where V99 is the last covariate and add some noiseConstruct 3 models: one linear model with no variables, one with all the variables and one with only the variable V99Compute the MSE of each modelHint: for the first two points code is provided below.In [1]:set.seed(123)n p x ## Generate the output variable as a linear combination of x## With jitter() you add random noisey Pick from your data only 1/5th random observationsUse the remaining 4/5th observations to rebuild the three modelsMake prediction on the 1/5th observationsWhat do you observe now?Hint: for the first point code is provided.In [2]:## Pick randomly 1/5th of observastionsii ## Built a test and training setdata.te data.tr y.te y.tr Exercise - Part 2Now:Build 99 different models including from 1 to 99 input variables on training data (4/5th observations)For each model compute the out-of-sample MSE on the remaining 1/5th (test data)Plot the out-of-sample MSE as a function of the number of variablesHint: you may prefer to use a for-loop.Exercise Cross ValidationWe are interested in predicting the quality of wines using chemical indicators. To do so, we have a disposal two data sets for white and red wine, reporting the variable quality on a scale from 0 to 10.white wine dataFind three models you might think are meaningful for the prediction with different number of variablesCompute the in-sample mean squared error and the R squaredCompute the out-of-sample mean squared error using a test-training set approach (remember to set the seeds)Compute the out-of-sample mean squared error using 10-folds cross validationWhich wine would you buy now?Hint: the skeleton for cross validation is provided.In [4]:wine.white y #for (i in 1:K) {# hold # train ## ## Build model ## ## Store the predictions for the left-out segment# predictions[hold] #}## Calculate estimated MSPE#mean((y - predictions)^2)Ridge RegressionWe are interested in predicting the level of alchol consumption during the weekend for students, controlling for many social and academic indicators. Some of them are the average grades for three years, the income of the family, the age, etc. In total we have 32 variables, but we want to find just the ones most correlated with alchol consumption.We will explore the linear mode, the ridge regression and lasso.Do the following:Download the student txt fileNote: the dependent variable is Walc (Week-end alchol consumption)In [ ]:student Explore the variables and construct two different linear models. You can use any specification you think is most appropriate. Provide justifications.Report the interpretation of the coefficientsRidge Regression:Construct a sequence of lambda from  to Use cross validation to find the best lambda to be used for estimating ridge regression (use the skeleton provided in the hints of the previous exercises)Construct a ridge regression with the lambda with minimum errorHint: Code for the first two points is provided.Model comparison:Use cross validation to compare the linear models that you choose and the ridge regression.Do you think it is the correct way to compare the models?In [ ]:## Hint code for the first part of the exercise## Expand matrixxm y ## Use this functions to standardizestandard_for_dummy { return(1)} return(sd(k)) }sd.tr mu_for_dummy { return(0.5)} mean(k) }mu.tr ## New covariate matrixxmn ## Set your lambda lambdas.rr 转自:http://www.6daixie.com/contents/18/4922.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容