LINGO 菜单

1. 求解模型(Slove):Ctrl+S

2. 求解结果(Solution):Ctrl+O

3. 查看(Look):Ctrl+L

4. 灵敏性分析(Range,Ctrl+R):为了激活灵敏性分析,运行 LINGO|Options,选择 General Solver Tab, 在 Dual Computations 列表框中,选择 Prices and Ranges 选项。

max=60*desks+30*tables+20*chairs;

8*desks+6*tables+chairs<=48;

4*desks+2*tables+1.5*chairs<=20;

2*desks+1.5*tables+.5*chairs<=8;

tables<=5;

求解这个模型,并激活灵敏性分析。这时,查看报告窗口(Reports Window),可以看到结果。

“Global optimal solution found at iteration: 3”表示 3 次迭代后得到全局最优解。

 “Objective value:280.0000”表示最优目标值为 280。 “Value”给出最优解中各变量的值:2 个书桌(desks), 0 个餐桌(tables), 8 个椅子(chairs)。所以 desks、chairs 是基变量(非 0),tables 是非基变量(0)。

“Slack or Surplus”给出松驰变量的值:

第 1 行松驰变量 =280(模型第一行表示目标函数,所以第二行对应第一个约束)

第 2 行松驰变量 =24

第 3 行松驰变量 =0

第 4 行松驰变量 =0

第 5 行松驰变量 =5

“Reduced Cost”列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时, 目标函数的变化率。其中基变量的reduced cost值应为 0, 对于非基变量 Xj, 相应的 reduced cost值表示当某个变量Xj 增加一个单位时目标函数减少的量( max型问题)。

本例中:变量tables对应的reduced cost值为 5,表示当非基变量tables的值从 0 变为 1 时(此时假定其他非基变量保持不变,但为了满足约束条件,基变量显然会发生变化),最优的目标函数值 = 280 - 5 = 275。

“DUAL PRICE”(对偶价格)表示当对应约束有微小变动时, 目标函数的变化率。输出结果中对应于每一个约束有一个对偶价格。 若其数值为 p, 表示对应约束中不等式右端项若增加 1 个单位,目标函数将增加 p 个单位(max 型问题)。显然,如果在最优解处约束正好取等号(也就是“紧约束”,也称为有效约束或起作用约束),对偶价格值才可能不是0。

本例中:第 3、4 行是紧约束,对应的对偶价格值为 10,表示当紧约束

3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 20   变为   3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 21时,目标函数值 = 280 +10 = 290。对第 4 行也类似。

对于非紧约束(如本例中第 2、5 行是非紧约束),DUAL PRICE 的值为 0, 表示对应约束中不等式右端项的微小扰动不影响目标函数。有时, 通过分析 DUAL PRICE, 也可对产生不可行问题的原因有所了解。

灵敏度分析的结果是

目标函数中 DESKS 变量原来的费用系数为 60,允许增加(Allowable Increase)=4、允许减少(Allowable Decrease)=2,说明当它在[60-4,60+20] = [56,80]范围变化时,最优基保持不变。对 TABLES、CHAIRS 变量,可以类似解释。由于此时约束没有变化(只是目标函数中某个费用系数发生变化),所以最优基保持不变的意思也就是最优解不变(当然,由于目标函数中费用系数发生了变化,所以最优值会变化)。

第 2 行约束中右端项(Right Hand Side,简写为 RHS)原来为 48,当它在[48-24,48+∞]= [24,∞]范围变化时,最优基保持不变。第 3、4、5 行可以类似解释。不过由于此时约束发生变化,最优基即使不变,最优解、最优值也会发生变化。


5. 模型通常形式(Generate):Ctrl+G

6. 选项(Options):Ctrl+I    (28页—35页)

(1)Interface(界面)选项卡

(2)General Solver(通用求解器)选项卡

(3)Linear Solver(线性求解器)选项卡

(4)Nonlinear Solver(非线性求解器)选项卡

(5)Integer Pre-Solver(整数预处理求解器)选项卡

(6)Integer Solver(整数求解器)选项卡

(7)Global Solver(全局最优求解器)选项卡

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,451评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,172评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,782评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,709评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,733评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,578评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,320评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,241评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,686评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,878评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,992评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,715评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,336评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,912评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,040评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,173评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,947评论 2 355

推荐阅读更多精彩内容