因为做个实验,需要北京市所有公交车站点的经纬度,就使用爬虫爬取了一下,为了加快速度用到了python 多进程,用这个代码爬取其他市的公交车站经纬度也是可行的。步骤分为两块,首先爬取北京市公交车站点的名称,然后调用百度的地址解析API爬取站点的经纬度。结果及代码https://github.com/FFGF/BeiJIngBusStation
爬取北京市公交车站点
爬取线路名称
从这个https://beijing.8684.cn/网址爬取名称,先爬取线路名称,再爬取每条线路对应的站名
代码如下,将爬取的线路存储为pick文件
import requests
import pandas as pd
import pickle
import os
from bs4 import BeautifulSoup
def readData(filePath):
with open(filePath, 'rb') as f:
return pickle.load(f)
def writeData(filePath, data):
with open(filePath, 'wb') as f:
pickle.dump(data, f)
baseUrl = 'https://beijing.8684.cn'
urlList = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'B', 'C', 'D', 'F', 'G', 'H', 'K', 'L', 'M', 'P', 'S', 'T', 'X', 'Y', 'Z']
def getBusLineName():
"""爬取北京市公交车线路名称
:return:
"""
result = []
for url in urlList:
tempUrl = baseUrl + "/list" + url
html = requests.get(tempUrl)
soup = BeautifulSoup(html.text, "html.parser")
aTag = soup.select(".list > a")
for a in aTag:
result.append([a.text, a['href']])
return result
busLines = getBusLineName()
busLinesPd = pd.DataFrame(columns=['lineName', 'url'], data=busLines)
if os.path.exists('/data/busLinesPd.pkl'):
writeData('./data/busLinesPd.pkl', busLinesPd)
爬取站点名称
代码如下,将结果存储到数据库中,如果爬取过程中报错,就再运行一次,已经爬取的数据会被过滤掉,只会爬取未爬取的数据。会在数据库中存储一个站点多次,因为一个站点出现在不同线路中,等爬取经纬度的时候去重即可。
import requests
import pickle
import time
import random
from bs4 import BeautifulSoup
import MySQLdb
from multiprocessing import Pool
def readData(filePath):
"""读取pickle文件
:param filePath: 文件路径
:return:
"""
with open(filePath, 'rb') as f:
return pickle.load(f)
def writeData(filePath, data):
"""将data写入到filePath
:param filePath: 路径
:param data: 数据
:return:
"""
with open(filePath, 'wb') as f:
pickle.dump(data, f)
def writeMySql(data):
"""向数据库批量写入数据
:param data: [[],[],[]...]
:return:
"""
db = MySQLdb.connect("localhost", "root", "", "busstation", charset='utf8')
cursor = db.cursor()
sql = """
INSERT INTO stationname(line_name, url, station_name)
VALUES (%s, %s, %s)
"""
cursor.executemany(sql, data)
db.commit()
cursor.close()
db.close()
return
def getExistLines():
"""获得已经写入数据库的公交站数据
:return:
"""
db = MySQLdb.connect("localhost", "root", "", "busstation", charset='utf8')
cursor = db.cursor()
sql = """
select distinct(line_name) from stationname;
"""
cursor.execute(sql)
results = cursor.fetchall()
db.commit()
cursor.close()
db.close()
return results
baseUrl = 'https://beijing.8684.cn'
def getBusStationName(line):
"""获取每条线路line的公交车站名然后写入数据库
:param line: 公交线路名称
:return:
"""
result = []
tempUrl = baseUrl + line[1]
try:
# 随机休眠1-5秒,防止被拒绝
time.sleep(random.randint(1, 5))
html = requests.get(tempUrl)
except:
# 休眠20秒
time.sleep(20)
getBusStationName(line)
soup = BeautifulSoup(html.text, "html.parser")
liTag = soup.select(".bus-lzlist")[0].find_all("li")
for li in liTag:
result.append([line[0], line[1], li.text])
writeMySql(result)
print(line[0], line[1])
return
if __name__ == '__main__':
wait_crawl = []
existLines = getExistLines()
existLines = [item[0] for item in existLines]
busLinesPd = readData('./data/busLinesPd.pkl')
# 将已经爬取的线路排除,爬取未爬取的数据,我本机需要运行这个函数两次,第一次爬取了一千八百多个线路,第二次爬取一百多个。一共一千九百多个线路
for item in busLinesPd.values:
if item[0] in existLines:
continue
wait_crawl.append([item[0], item[1]])
p = Pool(4)
p.map(getBusStationName, wait_crawl)
数据库文件
数据库名称为busstation,有两个表,一个存储站点,一个存储站点经纬度
建表语句
CREATE TABLE `station_latlong` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`station_name` varchar(255) DEFAULT NULL,
`lat` varchar(255) DEFAULT NULL,
`lng` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=14066 DEFAULT CHARSET=utf8mb4;
CREATE TABLE `stationname` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`line_name` varchar(255) DEFAULT NULL,
`url` varchar(255) DEFAULT NULL,
`station_name` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=50768 DEFAULT CHARSET=utf8mb4;
爬取北京市公交车站点对应的经纬度
代码如下
import requests
import time
import MySQLdb
from multiprocessing import Pool, Queue
def getStationName():
"""获取公交站名称
:return:
"""
db = MySQLdb.connect("localhost", "root", "", "busstation", charset="utf8")
cursor = db.cursor()
sql = """
select distinct(station_name) from stationname
"""
cursor.execute(sql)
results = cursor.fetchall()
cursor.close()
db.close()
return results
def getExistStation():
"""获得已经写入数据库的公交站数据
:return:
"""
db = MySQLdb.connect("localhost", "root", "", "busstation", charset='utf8')
cursor = db.cursor()
sql = """
select distinct(station_name) from station_latlong
"""
cursor.execute(sql)
results = cursor.fetchall()
db.commit()
cursor.close()
db.close()
return results
def writeMySql(queue):
"""向数据库批量写入数据
:param data: [[],[],[]...]
:return:
"""
data = []
while not queue.empty():
data.append(queue.get())
db = MySQLdb.connect("localhost", "root", "", "busstation", charset='utf8')
cursor = db.cursor()
sql = """
INSERT INTO station_latlong(station_name, lat, lng)
VALUES (%s, %s, %s)
"""
cursor.executemany(sql, data)
db.commit()
cursor.close()
db.close()
return
queues = [Queue() for _ in range(5)]
def getStationLatLong(station):
index = station[0]
stationName = "北京市" + station[1] + "公交车站"
urlTemplate = "http://api.map.baidu.com/geocoding/v3/?address={}&output=json&ak=你自己的ak&city=北京市'"
# random.randint(1,5)
html = requests.get(urlTemplate.format(stationName))
latLongJson = html.json()['result']
lat = latLongJson['location']['lat']
long = latLongJson['location']['lng']
queue = queues[index % 5]
queue.put([station[1], lat, long])
if queue.qsize() == 20: # 最开始的时候可以设置20,到最后几十条数据的时候需要设置为1
writeMySql(queue)
time.sleep(3)
if __name__ == '__main__':
pool = Pool(4)
stationNames = getStationName()
stationNames = set(item[0] for item in stationNames)
existStations = getExistStation()
existStations = set(item[0] for item in existStations)
wait_crawl = stationNames - existStations
stationNames = [[i,v] for i, v in enumerate(wait_crawl)]
pool.map(getStationLatLong, stationNames)
代码解释,我电脑有4个CPU所以开启四个进程,查看自己电脑CPU个数os.cpu_count(),然后为了加快插入数据库插入,创建5个Queue,然后队列满20个,批量插入到数据库。这样到数据最后只剩下一百条的时候你手动把代码if queue.qsize() == 20: 修改为if queue.qsize() == 1:即可。然后记得把代码urlTemplate = "http://api.map.baidu.com/geocoding/v3/?address={}&output=json&ak=你自己的ak&city=北京市'",修改为自己的ak
获取百度ak
创建,把刚刚创建的复制出来即可获取一个ak可以爬取六千条左右,再多了就要认证了,所以找同学借个账号,再爬。