Kibana 分析和可视化平台

原文: Kibana详细入门教程

目录

  • [一、Kibana是什么]
  • [二、如何安装]
  • [三、如何加载自定义索引]
  • [四、如何搜索数据]
  • [五、如何切换中文]
  • [六、如何使用控制台
  • [七、如何使用可视化]
  • [八、如何使用仪表盘]

一、Kibana是什么

Kibana 是为 Elasticsearch设计的开源分析和可视化平台。你可以使用 Kibana 来搜索,查看存储在 Elasticsearch 索引中的数据并与之交互。你可以很容易实现高级的数据分析和可视化,以图表的形式展现出来。
使用前我们肯定需要先有Elasticsearch啦,安装使用Elasticsearch可以参考Elasticsearch构建全文搜索系统

下面分别演示一下Kibana的安装、自定义索引,搜索,控制台调用es的api和可视化等操作,特别需要注意的是,控制台可以非常方便的来调用es的api,强烈推荐使用

二、如何安装

直接下载对应平台的版本就可以,参考地址Installing Kibana
我里我直接下载了mac平台的kibana-7.6.1-darwin-x86_64.tar.gz
解压完画风如下

image

配置可以参考Configring Kibana
设置监听端口号、es地址、索引名

image

默认情况下,kibana启动时将生成随机密钥,这可能导致重新启动后失败,需要配置多个实例中有相同的密钥
设置

xpack.reporting.encryptionKey: "chenqionghe"
xpack.security.encryptionKey: "122333444455555666666777777788888888"
xpack.encryptedSavedObjects.encryptionKey: "122333444455555666666777777788888888"

启动

./bin/kibana

打开http://localhost:5601,画风如下

image

提示我们可以使用示例数据,也可以使用自己已有的数据,我把示例数据都下载了,单击侧面导航中的 Discover 进入 Kibana 的数据探索功能:


image

可以看到数据已经导入了,我们可以直接使用查询栏编写语句查询


image

三、如何加载自定义索引

接下来演示加载已经创建book索引
单击 Management 选项


image

然后单击 Index Patterns 选项。


image

点击Create index pattern定义一个新的索引模式。


image

点击Next step


image

点击Create index pattern


image

出来如下界面,列出了所有index中的字段


image

接下来,我们再来使用一下kibana查看已经导入的索引数据


image
image

可以看到,已经能展示和检索出我们之前导入的数据,奥利给!

四、如何搜索数据

image
image

可以看到,我们能很方便地搜索栏使用Llucene查询,查询语法可以参考Lucene查询语法汇总

五、如何切换中文

config/kibana.yml添加

i18n.locale: "zh-CN"

重新启动,即可生效


image

六、如何使用控制台

控制台插件提供一个用户界面来和 Elasticsearch 的 REST API 交互。控制台有两个主要部分: editor ,用来编写提交给 Elasticsearch 的请求; response 面板,用来展示请求结果的响应。在页面顶部的文本框中输入 Elasticsearch 服务器的地址。默认地址是:“localhost:9200”。
点击左侧栏的[Dev Tools],可以看到如下界面,可以很方便地执行命令


image

示例操作

# 查看所有节点
GET _cat/nodes

# 查看book索引数据
GET book/_search
{
    "query": {
    "match": {
      "content": "chenqionghe"
    }
  }
}

# 添加一条数据
POST book/_doc 
{
  "page":8,
  "content": "chenqionghe喜欢运动,绳命是如此的精彩,绳命是多么的辉煌"
}

# 更新数据
PUT book/_doc/iSAz4XABrERdg9Ao0QZI
{
  "page":8,
  "content":"chenqionghe喜欢运动,绳命是剁么的回晃;绳命是入刺的井猜"
}

# 删除数据
POST book/_delete_by_query
{
  "query": {
    "match": {
      "page": 8
    }
  }
}

# 批量插入数据
POST book/_bulk
{ "index":{} }
{ "page":22 , "content": "Adversity, steeling will strengthen body.逆境磨练意志,锻炼增强体魄。"}
{ "index":{} }
{ "page":23 , "content": "Reading is to the mind, such as exercise is to the body.读书之于头脑,好比运动之于身体。"}
{ "index":{} }
{ "page":24 , "content": "Years make you old, anti-aging.岁月催人老,运动抗衰老。"}
{ "index":{} }

image

七、如何使用可视化

Kibana可视化控件基于 Elasticsearch 的查询。利用一系列的 Elasticsearch 查询聚合功能来提取和处理数据,再通过创建图表来呈现数据分布和趋势

点击Visualize菜单,进入可视化图表创建界面,Kibana自带有上10种图表,我们来创建一个自己的图表


image

我们来添加一个直方图


image
image
image

可以看到,默认已经有一个Y轴了,统计的是数量,我们添加一个X轴,点击Buckets下的Add


image

如下,我选择了customer_id字段作为x轴


image

执行后如下


image

保存一下


image

八、如何使用仪表盘

Kibana 仪表板(Dashboard) 展示保存的可视化结果集合。
就是可以把上面定义好的图表展示
创建一个Dashboard


image

添加已经存在的图表


image
image

添加完后保存即可,我们可以定制出非常丰富的面板,如下


image

Kibana的使用就是这么简单,是不是觉得超简单,建议自己去安装使用一下,加深印象,light weight baby !

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352