003 内容推荐:探索与信息茧房

提及个性化推荐,一个常见的误解是用户什么喜欢推荐什么,最终会将用户限制在信息茧房之中。

信息茧房

信息茧房其实关联了推荐领域的一个经典问题:Exploitation(利用已有兴趣推荐)和Exploration(探索新的兴趣)。推荐系统势必要在E&E之间取平衡和折衷。

推荐系统真的会把你陷入信息茧房么?
首先给出个人结论:探索是一个推荐系统必须做且需要做好的事情。如果推荐系统只推荐给你喜欢的内容,那其实说明它没有做的足够好。

下面慢慢絮叨原因。

站在利益角度,探索是必须的

其一,从用户产品来看,单个兴趣点的内容供给是不足够支撑用户停留时长的,并将进一步影响用户的留存。
以科技为例,一天的新闻、评论总数是有上限的,超过这个上限,内容质量必然得不到保证,从而影响用户的消费体验。只有尽量挖掘用户的兴趣点,才能够不断拓宽用户内容推荐的候选集合,实现推荐效果的最优化。

其二,从推荐效果来看,用户行为是另一种维度的资源。在User-Based的协同过程中,用户体量越大,越能够产出有密度的行为,才能够让内容的消费属性被更好的刻画。

其三,从商业化来看,也是较直观的判断。用户兴趣点越广泛,其可被推荐的广告内容才越多,变现价值才越高。

站在利益角度,探索的执行是有策略的

兴趣的探索过程,是一个完善用户画像的过程。
如前所述,只要是探索就会有损失,产品的职责就在于如何尽量降低这种探索损失。

首先,是从产品内和产品外划分。

探索发生在产品外部

用一切方式从产品外部补全用户信息,让用户在使用我们提供的服务时已经有相对丰富的画像信息。即,让用户的冷启动过程体验更好。

  • 微博登陆是一个最常见的方式,通过采集微博的关注关系,有助于我们更好的理解一个账号。
  • 邀请用户上传手机通讯录,用户的社会关系一定程度反映了用户本身。(在如今的微信年代,这种关系事实上变弱了)
  • 其他……

其次,在产品内部从用户和内容的角度划分。

探索发生在用户耐受度更高的场景上

首先要明确的概念是:用户只有留存下来了,才有进一步探索的可能性。因此,要尽可能挑选那些用户耐受度更高的场景中应用探索,才符合产品的利益最大化。
比如,新老用户的划分,网络场景的划分、时间维度的划分等等。找到用户有耐性、有时间的场景里去做新兴趣点的探索,才能减少对时长的影响。

探索发生在更值得推荐的文章上

既然要进行探索,一个直观的判断就是选取那些具有类目代表性的,有一定质量的内容进行探索。

举一个场景,如果对于一个用户要推荐篮球的内容,自然应该选择推荐NBA类目下高质量的高热内容。NBA是篮球领域最具代表意义的赛事,高热和高质量能够让内容更具有消费性。

一个高质量的探索集合,能够保证用户即便看到了自己非感兴趣的内容,体验也相对可控。典型的应用例子如Yahoo Today Module:

Yahoo Today Module每天的Content Pool其实并不大。这里面都是网站编辑精选了的大概100篇文章。这些文章原本的质量就非常高。无论是这里面的任何一组,用户体验都没有明显变差。

或许,从终极意义上来说,每款产品都希望构建一个足以留住用户的信息茧房。我想,这样的茧房一定会大到用户感知不到。

有兴趣了解更多的,可以查看:
论推荐系统的Exploitation和Exploration

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容