并查集

并查集

说明

  • 并查集是一种精巧使用的数据结构,主要用于处理一些不相交的集合合并问题。经典的例子有连通子图、最小生成树Kruskal算法和LCA等。

原理

  • 将编号分别为1~n个对象分为不相交的集合,每个集合中,选择其中某个元素代表所在的集合。在这个集合中,并查集的操作有初始化、合并、找查。

步骤

初始化

  • 定义数组int s[]是以结点i为元素的并查集,在开始的时候没处理点与点朋友关系,所以每个点都属于独立的集,并且以元素i的值表示它的集s[i].
//初始化
void init_set(int num[],size_t n)
{
    for (int i = 1; i <= n; i++)
        num[i] = i;
}

合并

  • 例如,在并查集s中,把结点1合并到2。
//合并
void union_set(int num[], int x, int y)
{
    x = find_set(num, x);
    y = find_set(num, y);
    if (x != y) num[x] = num[y];    //结点合并

}

找查

  • 找查元素是一个递归的过程,知道元素的值和它的集相等就找到了根节点的集。
//找查
int find_set(int num[], int x)
{
    //递归找查,直到元素的值和它的集编号相同为止
    return x == num[x] ? x : find_set(x);
}

统计

  • 统计一共有多少个集。
//统计集合个数
int count_union_find(int num[], size_t n)
{
    int ans = 0;
    for (int i = 0; i < n; i++)
        if (num[i] == i)
            ans++;
    return ans;
}

代码

下面以一个问题作为样例

问题(HDU 1213)

                                    HDU 1213
问题描述
今天是依纳爵的生日。他邀请了很多朋友。现在是晚餐时间。他想知道他至少需要多少张桌子。你要注意的是,并不是所有的朋友都认识对方,所有的朋友都不想和陌生人呆在一起。
这个问题的一个重要规则是,如果我告诉你A知道B,B知道C,这意味着A,B,C彼此认识,所以它们可以留在一个表中。
例如:如果我告诉你A知道B,B知道C,D知道E,那么A,B,C可以留在一个表中,而D,E必须留在另一个表中。所以依纳爵至少需要2张桌子。

输入
输入以整数 T(1<=T<=25) 开头,表示测试用例的数量。然后是 T 测试用例。每个测试用例都以两个整数 N 和 M(1<=N,M<=1000) 开头。N表示好友数,好友从1标记到N。然后是M行。每行由两个整数 A 和 B(A!=B) 组成,这意味着朋友 A 和朋友 B 彼此认识。两个案例之间将有一个空行。

输出
对于每个测试用例,只需输出Ignatius至少需要多少个表。请勿打印任何空白。

示例输入
2
5 3
1 2
2 3
4 5

5 1
2 5

样例输出
2
4

完整代码

#include <iostream>

using namespace std;

//初始化
void init_set(int num[], size_t n)
{
    for (int i = 1; i <= n; i++)
        num[i] = i;
}

//找查
int find_set(int num[], int x)
{
    //递归找查,直到元素的值和它的集编号相同为止
    return x == num[x] ? x : find_set(num, x);
}

//合并
void union_set(int num[], int x, int y)
{
    x = find_set(num, x);
    y = find_set(num, y);
    if (x != y) num[x] = num[y];    //结点合并

}

//统计集合个数
int count_union_find(int num[], size_t n)
{
    int ans = 0;
    for (int i = 1; i <= n; i++)
        if (num[i] == i)
            ans++;
    return ans;
}

int main()
{
    int t;
    cin >> t;   //样例组数
    while (t--)
    {
        int num[1024];
        int n, m;   //人数、表示两个人认识的行数
        cin >> n >> m;

        init_set(num, 1024);

        for (int i = 1; i <= m; i++)
        {
            int x, y;
            cin >> x >> y;  //哪两个人认识,即要合并的集合
            union_set(num, x, y);
        }

        cout << count_union_find(num, n) << endl;

    }


    return 0;
}

声明

  • 参考《算法竞赛入门到进阶》——清华大学出版社
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容