不到 20 行 Python 代码,轻松玩转波士顿矩阵图!

Python 的绘图功能非常强大,如果能将已有的绘图库的各种复杂操作汇总在一个自己写的函数甚至是库/包中,并实现一行代码就调用并实现复杂的绘图功能,那就更是如虎添翼。

今天,我们就来讲讲一学就会的象限图

上图学名叫波士顿矩阵分析图,大白话四象限图。这种图经常用于两个维度的散点图中,根据特定的分割线(均值,目标值,实际值等)将数据分为四类,使人一目了然。

常用的场景为分析两个维度的变化比如:比较商品的库存天数和库存周转率充值人数和每付费用户平均收益购物篮系数和购物篮数量等

如何使用 Python 画出此图是本文的目标,事不宜迟,赶快开始!

任何复杂的 Python 绘图都不是一蹴而就的,而是先画出基础图形,后在此基础上按需添加元素并优化而成。这里以一组城市经济数据为例来讲解绘图步骤:

基础散点图

简洁又朴素的散点图,仅需一行代码。离期望成图还差几步

  • 为每个点添加对应的城市名称
  • 添加特定的分割线(均值,目标值,实际值)
  • 背景添加网格
  • 一些其他的定制需求...

图像优化

成图如下:



从上图可以看出:

  • 广西,河北,福建三地的人均水平和经济总量水平都偏低
  • 上海的人均经济水平很高,但经济总量水平缺只是略优于均值
  • 广东的人均经济水平稍次于均值,但经济总量水平很高
  • ......

当然,如果我们通过添加数量更多的定制线也可以实现常用的九宫格图


上图来自《数据化管理》库存天数与销售数量分析

最后总结一下,Python 的一些绘图方法、参数看似琐碎,但积累到一定程度后,便可以发现许多技巧都存在共通之处。小事情重复做也会成为大麻烦,所以高手都懂得分类处理。

贯通了 3 个核心,我们才能省时省事,成为别人眼中的高手:

  • 大量重复的工作懂得批处理。
  • 反复要做的固定操作固化成 " 模板 “,” 套路 "。
  • 碰到异常情况,知道如何准确高效的解决。

所以我们可以将四象限图的绘制方法封装成自己的函数以供快捷调用,篇幅原因就不多展示了。

上文核心代码如下:

import matplotlib.pyplot as plt

# 为每个点添加对应的城市名称
plt.figure(figsize=(10, 8))
# 基础散点图:这里需要单独拆开 x,y 轴和希望配对的标签,为下面的轮子做准备
x, y = df['经济总量水平'], df['人均水平']
label = df['area']
plt.scatter(x, y)
plt.xlabel('经济总量水平'); plt.ylabel('人均水平')

# 对散点图中的每一个点进行文字标注
 ## 固定代码,无需深究,拿来即用
for a,b,l in zip(x,y,label): # zip 拉链函数将其配对组合
    plt.text(a, b+0.1, '%s.' % l, ha='center', va='bottom', 
                                             fontsize=14)
               # 0.1 向上轻微偏移
        
# 添加特定分割线
 ## vlines: vertical 垂直于 x 轴的线,在变量'经济总量'的均值处开始画,
   ## y 轴的范围[1.5, 3]
plt.vlines(x=df['经济总量水平'].mean(), ymin=-1.5, ymax=3, 
           colors='red', linewidth=2)
plt.hlines(y=df['人均水平'].mean(), xmin=-4, xmax=6,
           colors='red', linewidth=2)

# 背景网格
plt.grid(True)
# 定制需求:隐去四周的边框线条
# sns.despine(trim=True, left=True, bottom=True)

案例中的源数据源代码可在公众号 “ 数据分析与商业实践 ” 后台回复 “ 象限图 ” 获取~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容