聊聊ribbon的ServerListSubsetFilter

本文主要研究一下ribbon的ServerListSubsetFilter

ServerListSubsetFilter

ribbon-loadbalancer-2.3.0-sources.jar!/com/netflix/loadbalancer/ServerListSubsetFilter.java

public class ServerListSubsetFilter<T extends Server> extends ZoneAffinityServerListFilter<T> implements IClientConfigAware, Comparator<T>{

    private Random random = new Random();
    private volatile Set<T> currentSubset = Sets.newHashSet(); 
    private DynamicIntProperty sizeProp = new DynamicIntProperty(DefaultClientConfigImpl.DEFAULT_PROPERTY_NAME_SPACE + ".ServerListSubsetFilter.size", 20);
    private DynamicFloatProperty eliminationPercent = 
            new DynamicFloatProperty(DefaultClientConfigImpl.DEFAULT_PROPERTY_NAME_SPACE + ".ServerListSubsetFilter.forceEliminatePercent", 0.1f);
    private DynamicIntProperty eliminationFailureCountThreshold = 
            new DynamicIntProperty(DefaultClientConfigImpl.DEFAULT_PROPERTY_NAME_SPACE + ".ServerListSubsetFilter.eliminationFailureThresold", 0);
    private DynamicIntProperty eliminationConnectionCountThreshold = 
            new DynamicIntProperty(DefaultClientConfigImpl.DEFAULT_PROPERTY_NAME_SPACE + ".ServerListSubsetFilter.eliminationConnectionThresold", 0);
    
    @Override
    public void initWithNiwsConfig(IClientConfig clientConfig) {
        super.initWithNiwsConfig(clientConfig);
        sizeProp = new DynamicIntProperty(clientConfig.getClientName() + "." + clientConfig.getNameSpace() + ".ServerListSubsetFilter.size", 20);
        eliminationPercent = 
                new DynamicFloatProperty(clientConfig.getClientName() + "." + clientConfig.getNameSpace() + ".ServerListSubsetFilter.forceEliminatePercent", 0.1f);
        eliminationFailureCountThreshold = new DynamicIntProperty( clientConfig.getClientName() + "." + clientConfig.getNameSpace()
                + ".ServerListSubsetFilter.eliminationFailureThresold", 0);
        eliminationConnectionCountThreshold = new DynamicIntProperty(clientConfig.getClientName() + "." + clientConfig.getNameSpace()
                + ".ServerListSubsetFilter.eliminationConnectionThresold", 0);
    }
        
    /**
     * Given all the servers, keep only a stable subset of servers to use. This method
     * keeps the current list of subset in use and keep returning the same list, with exceptions
     * to relatively unhealthy servers, which are defined as the following:
     * <p>
     * <ul>
     * <li>Servers with their concurrent connection count exceeding the client configuration for 
     * {@code <clientName>.<nameSpace>.ServerListSubsetFilter.eliminationConnectionThresold} (default is 0)
     * <li>Servers with their failure count exceeding the client configuration for 
     * {@code <clientName>.<nameSpace>.ServerListSubsetFilter.eliminationFailureThresold} (default is 0)
     * <li>If the servers evicted above is less than the forced eviction percentage as defined by client configuration
     * {@code <clientName>.<nameSpace>.ServerListSubsetFilter.forceEliminatePercent} (default is 10%, or 0.1), the
     * remaining servers will be sorted by their health status and servers will worst health status will be
     * forced evicted.
     * </ul>
     * <p>
     * After the elimination, new servers will be randomly chosen from all servers pool to keep the
     * number of the subset unchanged. 
     * 
     */
    @Override
    public List<T> getFilteredListOfServers(List<T> servers) {
        List<T> zoneAffinityFiltered = super.getFilteredListOfServers(servers);
        Set<T> candidates = Sets.newHashSet(zoneAffinityFiltered);
        Set<T> newSubSet = Sets.newHashSet(currentSubset);
        LoadBalancerStats lbStats = getLoadBalancerStats();
        for (T server: currentSubset) {
            // this server is either down or out of service
            if (!candidates.contains(server)) {
                newSubSet.remove(server);
            } else {
                ServerStats stats = lbStats.getSingleServerStat(server);
                // remove the servers that do not meet health criteria
                if (stats.getActiveRequestsCount() > eliminationConnectionCountThreshold.get()
                        || stats.getFailureCount() > eliminationFailureCountThreshold.get()) {
                    newSubSet.remove(server);
                    // also remove from the general pool to avoid selecting them again
                    candidates.remove(server);
                }
            }
        }
        int targetedListSize = sizeProp.get();
        int numEliminated = currentSubset.size() - newSubSet.size();
        int minElimination = (int) (targetedListSize * eliminationPercent.get());
        int numToForceEliminate = 0;
        if (targetedListSize < newSubSet.size()) {
            // size is shrinking
            numToForceEliminate = newSubSet.size() - targetedListSize;
        } else if (minElimination > numEliminated) {
            numToForceEliminate = minElimination - numEliminated; 
        }
        
        if (numToForceEliminate > newSubSet.size()) {
            numToForceEliminate = newSubSet.size();
        }

        if (numToForceEliminate > 0) {
            List<T> sortedSubSet = Lists.newArrayList(newSubSet);           
            Collections.sort(sortedSubSet, this);
            List<T> forceEliminated = sortedSubSet.subList(0, numToForceEliminate);
            newSubSet.removeAll(forceEliminated);
            candidates.removeAll(forceEliminated);
        }
        
        // after forced elimination or elimination of unhealthy instances,
        // the size of the set may be less than the targeted size,
        // then we just randomly add servers from the big pool
        if (newSubSet.size() < targetedListSize) {
            int numToChoose = targetedListSize - newSubSet.size();
            candidates.removeAll(newSubSet);
            if (numToChoose > candidates.size()) {
                // Not enough healthy instances to choose, fallback to use the
                // total server pool
                candidates = Sets.newHashSet(zoneAffinityFiltered);
                candidates.removeAll(newSubSet);
            }
            List<T> chosen = randomChoose(Lists.newArrayList(candidates), numToChoose);
            for (T server: chosen) {
                newSubSet.add(server);
            }
        }
        currentSubset = newSubSet;       
        return Lists.newArrayList(newSubSet);            
    }

    /**
     * Randomly shuffle the beginning portion of server list (according to the number passed into the method) 
     * and return them.
     *  
     * @param servers
     * @param toChoose
     * @return
     */
    private List<T> randomChoose(List<T> servers, int toChoose) {
        int size = servers.size();
        if (toChoose >= size || toChoose < 0) {
            return servers;
        } 
        for (int i = 0; i < toChoose; i++) {
            int index = random.nextInt(size);
            T tmp = servers.get(index);
            servers.set(index, servers.get(i));
            servers.set(i, tmp);
        }
        return servers.subList(0, toChoose);        
    }

    /**
     * Function to sort the list by server health condition, with
     * unhealthy servers before healthy servers. The servers are first sorted by
     * failures count, and then concurrent connection count.
     */
    @Override
    public int compare(T server1, T server2) {
        LoadBalancerStats lbStats = getLoadBalancerStats();
        ServerStats stats1 = lbStats.getSingleServerStat(server1);
        ServerStats stats2 = lbStats.getSingleServerStat(server2);
        int failuresDiff = (int) (stats2.getFailureCount() - stats1.getFailureCount());
        if (failuresDiff != 0) {
            return failuresDiff;
        } else {
            return (stats2.getActiveRequestsCount() - stats1.getActiveRequestsCount());
        }
    }
}
  • ServerListSubsetFilter继承了ZoneAffinityServerListFilter,实现了IClientConfigAware、Comparator接口
  • initWithNiwsConfig方法从IClientConfig读取了ServerListSubsetFilter.size、ServerListSubsetFilter.forceEliminatePercent、ServerListSubsetFilter.eliminationFailureThresold、ServerListSubsetFilter.eliminationConnectionThresold配置
  • getFilteredListOfServers方法会先调用父类ZoneAffinityServerListFilter的getFilteredListOfServers先过滤出zoneAffinityFiltered作为candidates,然后遍历currentSubset根据ServerStats剔除activeRequestsCount及failureCount超出阈值的server;然后根据numToForceEliminate,以及failureCount排序,使用subList方法得出forceEliminated,然后移除掉,最后randomChoose出来新的newSubSet,然后重置currentSubset

小结

在server list非常多的场景下,没有必要在连接池的保持这么多的连接,ServerListSubsetFilter可以在这种场景下对server list进行精简,通过剔除相对不健康(failureCount、activeRequestCount)的server来达到此目标

doc

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354

推荐阅读更多精彩内容