Flink-4.Flink 热门商品分析

热搜榜TOP10,一小时区间内每五分钟刷新

package com.ctgu.flink.project;

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.types.Row;


public class Flink_Sql_HotItem {
    public static void main(String[] args) throws Exception {

        long start = System.currentTimeMillis();

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        EnvironmentSettings settings = EnvironmentSettings
                .newInstance()
                .inStreamingMode()
                .build();

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);

        // 注册函数
        tableEnv.createFunction("toTs", TimestampFunction.class);

        String createSql =
                "CREATE TABLE source " +
                "    (" +
                "    `userId` BIGINT," +
                "    `itemId` BIGINT," +
                "    `categoryId` INT," +
                "    `behavior` STRING," +
                "    `ts` BIGINT" +
                "    )" +
                "    WITH (" +
                "       'connector'='filesystem'," +
                "       'format'='csv'," +
                "       'csv.field-delimiter'=','," +
                "       'path'='data/UserBehavior.csv'" +
                "    )";

        tableEnv.executeSql(createSql);

        String userBehavior = "select *, ts * 1000 as `timestamp` from source where behavior = 'pv'";

        Table userBehaviorTable = tableEnv.sqlQuery(userBehavior);

        DataStream<Row> rowDataStream = tableEnv.toDataStream(userBehaviorTable);

        Table source =
                tableEnv.fromDataStream(
                        rowDataStream,
                        Schema.newBuilder()
                                .columnByExpression("time_ltz", "TO_TIMESTAMP_LTZ(`timestamp`, 3)")
                                .watermark("time_ltz", "time_ltz - INTERVAL '5' SECOND")
                                .build());

        tableEnv.createTemporaryView("userBehavior", source);

        String hotItemSql =
                "       SELECT window_start, window_end, itemId, COUNT(*) as cnt" +
                        "  FROM TABLE(" +
                        "    HOP(Table userBehavior, DESCRIPTOR(time_ltz), INTERVAL '5' minutes, INTERVAL '1' hours)) " +
                        "  GROUP BY window_start, window_end, itemId";

        String top10Sql =
                "       SELECT *" +
                        "  FROM (" +
                        "    SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY cnt DESC) as rownum" +
                        "    FROM (" +
                        "      SELECT window_start, window_end, itemId, COUNT(*) as cnt" +
                        "      FROM TABLE(" +
                        "        HOP(Table userBehavior, DESCRIPTOR(time_ltz), INTERVAL '5' minutes, INTERVAL '1' hours)) " +
                        "      GROUP BY window_start, window_end, itemId" +
                        "    )" +
                        "  ) WHERE rownum <= 10";

        Table top10 = tableEnv.sqlQuery(top10Sql);

        tableEnv.toDataStream(top10, Row.class).print("top10");

        env.execute("Table SQL");

        System.out.println("耗时: " + (System.currentTimeMillis() - start) / 1000);
    }

    public static class TimestampFunction extends ScalarFunction {

        public Long eval(Long value) {
            return value * 1000L;
        }
    }

}

测试数据 UserBehavior.csv

543462,1715,1464116,pv,1511658000
662867,2244074,1575622,pv,1511658000
561558,3611281,965809,pv,1511658000
894923,3076029,1879194,pv,1511658000
834377,4541270,3738615,pv,1511658000
315321,942195,4339722,pv,1511658000
625915,1162383,570735,pv,1511658000
578814,176722,982926,pv,1511658000
873335,1256540,1451783,pv,1511658000
429984,4625350,2355072,pv,1511658000
866796,534083,4203730,pv,1511658000
937166,321683,2355072,pv,1511658000
156905,2901727,3001296,pv,1511658000
758810,5109495,1575622,pv,1511658000
107304,111477,4173315,pv,1511658000
452437,3255022,5099474,pv,1511658000
813974,1332724,2520771,buy,1511658000
524395,3887779,2366905,pv,1511658000
470572,3760258,1299190,pv,1511658001
543789,3110556,4558987,cart,1511658001
354759,2191348,4756105,pv,1511658001
382009,2123538,4801426,pv,1511658001
677046,1598945,4145813,pv,1511658001
946161,3021357,1506018,pv,1511658001
464646,2512167,2733371,pv,1511658001
1007641,5046581,2355072,pv,1511658001
723938,4719377,1464116,pv,1511658001
513008,3472922,401357,pv,1511658001
769215,22738,2355072,pv,1511658002
652863,4967749,1320293,pv,1511658002
801610,900305,634390,pv,1511658002
411478,3259235,2667323,pv,1511658002
431664,764155,2520377,pv,1511658002
487768,4125503,2465336,pv,1511658002
223813,4104826,2042400,pv,1511658002
672849,1822977,4801426,fav,1511658002
550127,4602135,65362,pv,1511658002
205752,1467139,171529,pv,1511658002
64419,2029769,2729260,pv,1511658002
756093,2881426,2520377,pv,1511658002
48353,4362292,583014,pv,1511658002
355509,4712764,4082778,pv,1511658003
826492,4016552,2735466,pv,1511658003
624915,2243311,2520377,pv,1511658003
682317,655740,982926,fav,1511658003
677621,1051389,4801426,pv,1511658003
422974,4649255,4818107,pv,1511658003
86512,563566,4756105,pv,1511658003
565218,2331370,3607361,pv,1511658003
232313,4182588,1730376,pv,1511658003
436966,1329977,3607361,cart,1511658003
561158,269170,2342116,fav,1511658003
344379,3318242,2920476,cart,1511658003
858204,2450718,235534,pv,1511658004
833924,3190176,1051370,pv,1511658004
992993,1900968,3794706,fav,1511658004
911930,1150136,2131531,pv,1511658004
736959,319911,4756105,pv,1511658004
82170,3588374,2465336,pv,1511658004
587599,2067643,4818107,cart,1511658004
367451,15775,4756105,pv,1511658004
428316,2478780,4284875,pv,1511658004
284910,3680091,3829657,pv,1511658004
345119,737662,4357323,pv,1511658004
551442,1762997,1879194,pv,1511658004
550384,3908776,1029459,pv,1511658004
677500,4534693,2640118,pv,1511658004
398626,2791489,1467750,pv,1511658004
118053,3545571,2433095,pv,1511658005
457401,4063698,4801426,pv,1511658005
45105,3234847,3141941,fav,1511658005
604760,2661651,3738615,pv,1511658005
905383,2064903,2939262,cart,1511658005
740788,3657484,4936889,pv,1511658005
456838,1242724,4756105,fav,1511658005
585217,215764,2640118,pv,1511658006
658185,4025021,4048584,fav,1511658006
210431,2035568,2328673,pv,1511658006
602619,1838725,2247787,pv,1511658006
860388,3797303,4357323,pv,1511658006
175334,2624960,801221,pv,1511658006
72403,4249007,1320293,pv,1511658006
307385,2551880,4050612,pv,1511658006
819283,2094785,2520377,pv,1511658006
801272,565658,1158475,pv,1511658006
344680,3224461,4789432,pv,1511658006
125206,1102775,622168,pv,1511658006
59131,1960832,154040,pv,1511658006
252339,2455388,3745824,pv,1511658006
794780,4465604,4242717,pv,1511658007
388283,4701157,1457367,pv,1511658007
416261,2101120,1299190,pv,1511658007
231758,3622677,4758477,pv,1511658007
92253,642337,4135185,pv,1511658007
297958,1762578,4801426,pv,1511658007
786771,1940649,1320293,pv,1511658007
789048,3144191,2355072,pv,1511658007
895384,1138468,1602288,pv,1511658007
578800,1324176,4135836,pv,1511658007
886777,4606952,996587,pv,1511658008
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容