Data visualisation

R for data science的一些笔记
原书地址:3 Data visualisation | R for Data Science (had.co.nz)

对数据集进行简单的可视化,可用以下通式,其中GEO_FUNCTION部分输入ggplot2中不同绘图方法的函数名,如geom_point

ggplot (data = <DATA> ) + 
  <GEO_FUNCTION>(mapping = aes(<MAPPINGS>))

aes() 用来对geom function进行描述,如定义x与y轴数据,同时可以使用color,scale,alpha,shape等参数,对指定分类进行颜色、大小、深浅以及图标形状的设定。应注意的是,当指定分类变量为无序变量时,使用有序scale来绘制是不合适的。而对于shape而言,ggplot2一次只能提供6中形状,当类别数量超过6时,超过部分将不予绘制。

ggplot(data = mpg) + 
  geom_point(mapping = aes(x = displ, y = hwy, color = class))
#use different colors according to the class

ggplot(data = mpg) + 
  geom_point(mapping = aes(x = cty, y = hwy, colour = displ < 5))
#classify the observations which displ<5 with different color

当然,上述变量也可单独设置,如设定绘制颜色为蓝色,则输入color = 'blue'即可。此时,color,scale,alpha,shape应输入在aes()外部,且颜色形状等不再传递分类的数据意义。

#one can try and will find the following two functions have different results.
#the points will be showed in red.
ggplot(data = mpg) + 
  geom_point(mapping = aes(x = displ, y = hwy, color = "blue"))

#the points will be showed in blue.
ggplot(data = mpg) + 
  geom_point(mapping = aes(x = displ, y = hwy), color = "blue")

geom_point()中还有stroke参数,用以表述图标的轮廓粗细,此时colour表示轮廓颜色,而fill表示填充颜色。

ggplot(mtcars, aes(wt, mpg)) +
  geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 1)

facets是一种,在原有画布上增加变量的一种方式。facet_wrap()在括号内使用~连接变量(当使用该函数时,应针对离散型变量),facet_grid()是另一种增加变量的方式,但需要输入两个变量,中间以~连接,变量会出现在横纵轴上,若只需要一个,可在另一个位置上输入.代替变量名。

ggplot(data = mpg) + 
  geom_point(mapping = aes(x = displ, y = hwy)) + 
  facet_wrap(~ class, nrow = 2)

ggplot(data = mpg) + 
  geom_point(mapping = aes(x = displ, y = hwy)) + 
  facet_grid(drv ~ cyl)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容