直方图计算

1 、目的

使用OpenCV函数 split 将图像分割成单通道数组。
使用OpenCV函数 calcHist 计算图像阵列的直方图
使用OpenCV函数 normalize归一化数组

2 、直方图概念

下面两幅图表达直方图概念

1 .

image.png

2 .

下面直方图概念是基于图像像素值,其实对图像梯度、每个像素的角度、等一切图像的属性值,我们都可以建立直方图。这个才是直方图的概念真正意义,不过是基于图像像素灰度直方图是最常见的。
直方图最常见的几个属性:
dims 表示维度,对灰度图像来说只有一个通道值dims=1
bins 表示在维度中子区域大小划分,bins=256,划分为256个级别

range 表示值得范围,灰度值范围为[0~255]之间
image.png

3 、API函数

CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
split(// 把多通道图像分为多个单通道图像
const Mat &src, //输入图像
Mat* mvbegin)// 输出的通道图像数组


CV_EXPORTS void calcHist( const Mat* images, int nimages,
                          const int* channels, InputArray mask,
                          OutputArray hist, int dims, const int* histSize,
                          const float** ranges, bool uniform = true, bool accumulate = false );
calcHist(
 const Mat* images,//输入图像指针
int images,// 图像数目
const int* channels,// 通道数
InputArray mask,// 输入mask,可选,不用
OutputArray hist,//输出的直方图数据
int dims,// 维数
const int* histsize,// 直方图级数
const float* ranges,// 值域范围
bool uniform,// true by default
bool accumulate// false by defaut
)

CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
                             int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
src               输入数组;
dst               输出数组,数组的大小和原数组一致;
alpha           1,用来规范值,2.规范范围,并且是下限;
beta             只用来规范范围并且是上限;//为0时则为值归一化,否则为范围归一化
norm_type   归一化选择的数学公式类型;
dtype           当为负,输出在大小深度通道数都等于输入,当为正,输出只在深度与输如不同,不同的地方游dtype决定;
mark            掩码。选择感兴趣区域,选定后只能对该区域进行操作。

4 、整体代码测试

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

int main(int argc, char** argv) {
    Mat src = imread("D:\\pic/4.jpg");
    if (!src.data) {
        printf("could not load image...\n");
        return -1;
    }
    char INPUT_T[] = "input image";
    char OUTPUT_T[] = "histogram demo";
    namedWindow(INPUT_T, CV_WINDOW_AUTOSIZE);
    namedWindow(OUTPUT_T, CV_WINDOW_AUTOSIZE);
    imshow(INPUT_T, src);

    // 分通道显示
    vector<Mat> bgr_planes;
    split(src, bgr_planes);
    //imshow("single channel demo", bgr_planes[0]);

    // 计算直方图
    int histSize = 256;
    float range[] = { 0, 256 };
    const float* histRanges = { range };
    Mat b_hist, g_hist, r_hist;
    calcHist(&bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRanges, true, false);
    calcHist(&bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRanges, true, false);
    calcHist(&bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRanges, true, false);

    // 归一化
    int hist_h = 400;
    int hist_w = 512;
    int bin_w = hist_w / histSize;
    Mat histImage(hist_w, hist_h, CV_8UC3, Scalar(0, 0, 0));
    normalize(b_hist, b_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
    normalize(g_hist, g_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
    normalize(r_hist, r_hist, 0, hist_h, NORM_MINMAX, -1, Mat());

    // render histogram chart
    for (int i = 1; i < histSize; i++) {
        line(histImage, Point((i - 1) * bin_w, hist_h - cvRound(b_hist.at<float>(i - 1))),
            Point((i)*bin_w, hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0), 2, LINE_AA);

        line(histImage, Point((i - 1) * bin_w, hist_h - cvRound(g_hist.at<float>(i - 1))),
            Point((i)*bin_w, hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0), 2, LINE_AA);

        line(histImage, Point((i - 1) * bin_w, hist_h - cvRound(r_hist.at<float>(i - 1))),
            Point((i)*bin_w, hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255), 2, LINE_AA);
    }
    imshow(OUTPUT_T, histImage);

    waitKey(0);
    return 0;
}

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容