Numpy 的基本用法

array 方法创建一维或多维数组,参数只能有一个,可以是列表、range、元组
不管是一维还是多维,数据类型都是 numpy.ndarray (多维数组):

In [11]: a = np.array(list(range(9)))

In [12]: a
Out[12]: array([0, 1, 2, 3, 4, 5, 6, 7, 8])

In [13]: a = np.array(range(9))

In [14]: a
Out[14]: array([0, 1, 2, 3, 4, 5, 6, 7, 8])

In [15]: a = np.array(tuple(range(9)))

In [16]: a
Out[16]: array([0, 1, 2, 3, 4, 5, 6, 7, 8])

In [17]: a = np.array([list('abcd'), list(range(1,5)), list('MNOP')])

In [18]: a
Out[18]: 
array([['a', 'b', 'c', 'd'],
       ['1', '2', '3', '4'],
       ['M', 'N', 'O', 'P']], dtype='<U1')

In [19]: type(a)
Out[19]: numpy.ndarray

np.ones 创建元素值全部为 1 的数组
np.zeros 创建元素值全为 0 的数组
np.empty 创建空值多维数组,只分配内存,不填充任何值
以上方法的参数也只能有一个,方法的返回值的数据类型是 numpy.ndarray :

In [63]: np.ones(8)
Out[63]: array([1., 1., 1., 1., 1., 1., 1., 1.])

In [64]: np.zeros(8)
Out[64]: array([0., 0., 0., 0., 0., 0., 0., 0.])

In [65]: np.empty(8)
Out[65]: array([0., 0., 0., 0., 0., 0., 0., 0.])

In [66]: np.empty(8) == np.zeros(8)
Out[66]: array([ True,  True,  True,  True,  True,  True,  True,  True])

In [74]: np.ones((3,4))
Out[74]: 
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.]])

In [75]: type(np.ones((3,4)))
Out[75]: numpy.ndarray

arange 的用法同 Python 中的 range :

In [85]: a = np.arange(3,9)

In [86]: a
Out[86]: array([3, 4, 5, 6, 7, 8])

In [87]: a = np.arange(9)

In [88]: a
Out[88]: array([0, 1, 2, 3, 4, 5, 6, 7, 8])

多维数组的一些属性:

In [89]: a = np.ones((2,3,4))

In [90]: a
Out[90]: 
array([[[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]],

       [[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]]])

In [91]: a.shape   # 形状,2 组 3 行 4 列
Out[91]: (2, 3, 4)

In [92]: a.ndim    # 维度
Out[92]: 3

In [93]: a.size    # 元素总数
Out[93]: 24

In [94]: a.mean()  # 平均值
Out[94]: 1.0

In [95]: a.dtype   # 元素的数据类型
Out[95]: dtype('float64')

numpy.ndarray 数据可以通过 reshape 方法变形:

In [96]: a = np.arange(12)

In [97]: a
Out[97]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

In [98]: a.reshape(3,4)
Out[98]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

In [99]: a
Out[99]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

多维数组相乘,用 dot 方法按照矩阵的规则:

In [115]: a = np.arange(1,5).reshape(2,2)

In [116]: b = np.arange(5,9).reshape(2,2)

In [117]: a
Out[117]: 
array([[1, 2],
       [3, 4]])

In [118]: b
Out[118]: 
array([[5, 6],
       [7, 8]])

In [119]: a * b
Out[119]: 
array([[ 5, 12],
       [21, 32]])

In [120]: a.dot(b)
Out[120]: 
array([[19, 22],
       [43, 50]])
#  19 = 1*5 + 2*7
#  22 = 1*6 + 2*8
#  43 = 3*5 + 4*7
#  50 = 3*6 + 4*8

random 用于定义元素值为随机数的多维数组,常见的使用:

# randint 方法生成一个 [0, 3) 之间的整数(只给一个参数,另一个参数则默认为 0)
In [131]: for i in range(9):
    ...:     print(np.random.randint(3))
    ...:     
0
1
1
1
0
1
2
1
2

# randint 生成 [-2, 4) 之间的整数
In [132]: for i in range(9):
    ...:     print(np.random.randint(-2, 4))
    ...:     
-1
-1
-2
3
3
2
-2
-1
1

In [12]: np.random.randint(1, 3,(3, 4))  # 第三个参数定义 shape
Out[12]:
array([[2, 1, 1, 1],
       [1, 1, 1, 2],
       [1, 1, 1, 2]])

In [18]: np.random.randint(0, 3, 5)
Out[18]: array([2, 1, 2, 1, 0])
# rand 方法根据给定 shape 生成值为 [0, 1) 之间的数据
In [19]: np.random.rand()
Out[19]: 0.7651785443614785

In [20]: np.random.rand(2)
Out[20]: array([0.10671066, 0.79280396])

In [21]: np.random.rand(2, 3)
Out[21]:
array([[0.47940471, 0.11098761, 0.85766535],
       [0.33916207, 0.3491621 , 0.33013207]])
# 正态分布 -- normal distribution
# 正态分布又称高斯分布,是连续随机变量概率分布的一种,有均值和标准差两个属性
# 正态分布的特点:曲线为轴对称图形,曲线下面的面积为 1
# normal 创建符合 ”正态分布“ 的数组,下面的 randn 是它的特殊形态
# 均值为 1,标准差为 2,数量为 15,符合正态分布的一维数组
In [134]: np.random.normal(1, 2, 15)
Out[134]: 
array([ 0.80615746, -0.26899861, -0.74888346,  4.53490444,  1.37697208,
       -0.55673608,  0.40559978,  0.7658986 ,  0.24568999, -0.2934424 ,
        2.26390635, -1.27112171,  3.3586831 ,  1.41351671,  0.17504285])

# 均值为 1,标准差为 2,三行五列的二维数组
In [135]: np.random.normal(1, 2, (3, 5))
Out[135]: 
array([[-2.27388178,  1.96749003,  1.15758907,  1.6039605 ,  3.43645324],
       [ 2.20140634, -1.0816135 ,  1.73925819,  3.18562444,  1.31227349],
       [-1.20275991,  1.14247008, -2.03774236, -1.25580262,  1.68002098]])

# 标准正态分布 -- standard normal distribution
# 标准正态分布就是一种特殊的、以 0 为均值、以 1 为标准差的正态分布,记为 N(0,1)
# randn 方法返回一组符合 “标准正态分布” 的随机样本
In [136]: np.random.randn(2, 3)
Out[136]: 
array([[ 2.28233846,  0.88622313, -0.21362108],
       [ 0.16395558,  0.0607688 ,  1.14653666]])
# seed 方法可以锚定某一次随机数
# 一次锚定,永久有效,不可更改
# 注意参数限制:Seed must be between 0 and 2**32 - 1
In [137]: np.random.seed(1)       # 下面的随机数就被锚定了

In [138]: np.random.randn(2,3)    # 这是被锚定的数组
Out[138]: 
array([[ 1.62434536, -0.61175641, -0.52817175],
       [-1.07296862,  0.86540763, -2.3015387 ]])

In [139]: np.random.randn(2,3)    # 这个是未被锚定的数组
Out[139]: 
array([[ 1.74481176, -0.7612069 ,  0.3190391 ],
       [-0.24937038,  1.46210794, -2.06014071]])

In [140]: np.random.randn(2,3)    # 这个也是未被锚定的数组
Out[140]: 
array([[-0.3224172 , -0.38405435,  1.13376944],
       [-1.09989127, -0.17242821, -0.87785842]])

In [141]: np.random.seed(1)       # 要想获取上面被锚定的那个,就先写这一行

In [142]: np.random.randn(2,3)    # 获得上面被锚定的数组
Out[142]: 
array([[ 1.62434536, -0.61175641, -0.52817175],
       [-1.07296862,  0.86540763, -2.3015387 ]])

aroundround 处理小数
它俩的功能是完全一样的,round 会调用 around 来实现:

In [104]: a = np.random.rand(9) * 10

In [105]: a
Out[105]: 
array([5.61645392, 6.08375342, 6.54287893, 9.11241186, 7.98373947,
       3.99255352, 8.40064373, 0.52359344, 1.2900161 ])

In [106]: np.around(a)   # 四舍五入取整数,但结果为 float 类型
Out[106]: array([6., 6., 7., 9., 8., 4., 8., 1., 1.])

In [107]: type(np.around(a)[1])
Out[107]: numpy.float64

In [108]: np.around(a).tolist()   # 转换成列表
Out[108]: [6.0, 6.0, 7.0, 9.0, 8.0, 4.0, 8.0, 1.0, 1.0]

# round 方法保留几位小数,第二个参数为小数位数,若结尾为 0 即舍弃 0 
In [109]: np.round(a, 3)
Out[109]: array([5.616, 6.084, 6.543, 9.112, 7.984, 
                 3.993, 8.401, 0.524, 1.29 ])

In [110]: np.around(3.33)
Out[110]: 3.0

In [111]: np.round(3.33, 3)
Out[111]: 3.33

In [112]: np.round(3.33333, 3)
Out[112]: 3.333

cumsum 累加,对任何多维数组均有效:

In [3]: a = np.random.rand(10)

In [4]: a
Out[4]: 
array([0.7520204 , 0.2567527 , 0.9816239 , 0.33018876, 0.78744841,
       0.54783023, 0.68264491, 0.49180885, 0.77609804, 0.69531601])

In [5]: a.cumsum()     # 第 n 个元素的值为前 n 个元素的值的和
Out[5]: 
array([0.7520204 , 1.00877309, 1.99039699, 2.32058575, 3.10803416,
       3.6558644 , 4.3385093 , 4.83031816, 5.6064162 , 6.30173221])

In [6]: np.cumsum(a)   # 同上
Out[6]: 
array([0.7520204 , 1.00877309, 1.99039699, 2.32058575, 3.10803416,
       3.6558644 , 4.3385093 , 4.83031816, 5.6064162 , 6.30173221])

In [9]: a = np.random.rand(3,4)

In [10]: a
Out[10]: 
array([[0.4454985 , 0.56523565, 0.79940169, 0.65121062],
       [0.17480848, 0.96010804, 0.95316188, 0.95932027],
       [0.20944227, 0.66267168, 0.71068392, 0.31114727]])

In [11]: a.cumsum()          # 对于多维数组,默认是先从左到右再从上到下累加,不分组
Out[11]: 
array([0.4454985 , 1.01073415, 1.81013584, 2.46134646, 2.63615495,
       3.59626299, 4.54942487, 5.50874514, 5.7181874 , 6.38085908,
       7.091543  , 7.40269027])

In [12]: a.cumsum(axis=0)    # 以列分组,从上到下累加
Out[12]: 
array([[0.4454985 , 0.56523565, 0.79940169, 0.65121062],
       [0.62030699, 1.52534369, 1.75256357, 1.61053089],
       [0.82974925, 2.18801537, 2.46324749, 1.92167816]])

In [13]: a.cumsum(axis=1)    # 以行分组,从左到右累加
Out[13]: 
array([[0.4454985 , 1.01073415, 1.81013584, 2.46134646],
       [0.17480848, 1.13491653, 2.08807841, 3.04739867],
       [0.20944227, 0.87211395, 1.58279787, 1.89394514]])

In [14]: np.cumsum(a, axis=1)  # 同上
Out[14]: 
array([[0.4454985 , 1.01073415, 1.81013584, 2.46134646],
       [0.17480848, 1.13491653, 2.08807841, 3.04739867],
       [0.20944227, 0.87211395, 1.58279787, 1.89394514]])

linspace 创建等差数列的一维数组:

In [21]: np.linspace(1, 20)  # 前两个参数分别为起止数,左闭右闭,默认创建 50 个元素
Out[21]: 
array([ 1.        ,  1.3877551 ,  1.7755102 ,  2.16326531,  2.55102041,
        2.93877551,  3.32653061,  3.71428571,  4.10204082,  4.48979592,
        4.87755102,  5.26530612,  5.65306122,  6.04081633,  6.42857143,
        6.81632653,  7.20408163,  7.59183673,  7.97959184,  8.36734694,
        8.75510204,  9.14285714,  9.53061224,  9.91836735, 10.30612245,
       10.69387755, 11.08163265, 11.46938776, 11.85714286, 12.24489796,
       12.63265306, 13.02040816, 13.40816327, 13.79591837, 14.18367347,
       14.57142857, 14.95918367, 15.34693878, 15.73469388, 16.12244898,
       16.51020408, 16.89795918, 17.28571429, 17.67346939, 18.06122449,
       18.44897959, 18.83673469, 19.2244898 , 19.6122449 , 20.        ])

In [22]: np.linspace(1, 20, 20)   # 第三个参数设置元素数量
Out[22]: 
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13.,
       14., 15., 16., 17., 18., 19., 20.])

In [23]: np.linspace(1, 20, 30)
Out[23]: 
array([ 1.        ,  1.65517241,  2.31034483,  2.96551724,  3.62068966,
        4.27586207,  4.93103448,  5.5862069 ,  6.24137931,  6.89655172,
        7.55172414,  8.20689655,  8.86206897,  9.51724138, 10.17241379,
       10.82758621, 11.48275862, 12.13793103, 12.79310345, 13.44827586,
       14.10344828, 14.75862069, 15.4137931 , 16.06896552, 16.72413793,
       17.37931034, 18.03448276, 18.68965517, 19.34482759, 20.        ])

concatenate 拼接数组:

In [4]: a = np.random.rand(5) * 100

In [5]: b = np.ones(3) * 10

In [6]: c = np.arange(1, 4) * -5

In [7]: a
Out[7]: array([41.59832138,  3.51696663,  4.36743242, 
               22.06651079, 47.40743768])

In [8]: b
Out[8]: array([10., 10., 10.])

In [9]: c
Out[9]: array([ -5, -10, -15])

# 拼接一维数组,默认参数 axis=0 可以不写
In [10]: np.concatenate((a, b, c))
Out[10]: 
array([ 41.59832138,   3.51696663,   4.36743242,  22.06651079,
        47.40743768,  10.        ,  10.        ,  10.        ,
        -5.        , -10.        , -15.        ])

In [11]: d = np.arange(1,7).reshape(2,3)

In [12]: e = np.arange(7, 13).reshape(2,3)

In [13]: d
Out[13]: 
array([[1, 2, 3],
       [4, 5, 6]])

In [14]: e
Out[14]: 
array([[ 7,  8,  9],
       [10, 11, 12]])

# 拼接二维数组,默认参数 axis=0 ,即纵向拼接
In [15]: np.concatenate((d, e))
Out[15]: 
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])

# axis=1 ,横向拼接
In [16]: np.concatenate((d, e), axis=1)
Out[16]: 
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 10, 11, 12]])

In [18]: f
Out[18]: 
array([[ 7,  8,  9],
       [10, 11, 12]])

In [19]: g
Out[19]: 
array([[13, 14],
       [15, 16]])

# 像上面 f、g 这种情况,只能横向拼接了,纵向会报错:
In [20]: np.concatenate((f, g), axis=1)
Out[20]: 
array([[ 7,  8,  9, 13, 14],
       [10, 11, 12, 15, 16]])

In [21]: np.concatenate((f, g))
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-21-d793fa5e247b> in <module>()
----> 1 np.concatenate((f, g))

ValueError: all the input array dimensions except for the concatenation...

.T 变形之术:

In [113]: a = np.arange(12).reshape(3, 4)

In [114]: a
Out[114]:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

In [115]: a.T  # 变形,纵横互换
Out[115]:
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])

In [117]: a.reshape(4, 3)  # 先把所有数据排成一行,然后重新分组
Out[117]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343