什么是自适应限流
自适应限流从整体维度对应用入口流量进行控制,结合应用的 Load、CPU 使用率、总体平均 RT、入口 QPS 和并发线程数等几个维度的监控指标,通过自适应的流控策略,让系统的入口流量和系统的负载达到一个平衡,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。
核心目标:
1.自动嗅探负载和 qps,减少人工配置
2.削顶,保证超载时系统不被拖垮,并能以高水位 qps 继续运行
限流规则
计算吞吐量:利特尔法则 L = λ * W
如上图所示,如果我们开一个小店,平均每分钟进店 2 个客人(λ),每位客人从等待到完成交易需要 4 分钟(W),那我们店里能承载的客人数量就是 2 * 4 = 8 个人
同理,我们可以将 λ 当做 QPS, W 呢是每个请求需要花费的时间,那我们的系统的吞吐就是 L = λ * W ,所以我们可以使用利特尔法则来计算系统的吞吐量。
指标介绍
滑动窗口
在自适应限流保护中,采集到的指标的时效性非常强,系统只需要采集最近一小段时间内的 qps、rt 即可,对于较老的数据,会自动丢弃。为了实现这个效果,kratos 使用了滑动窗口来保存采样数据。
如上图,展示了一个具有两个桶(bucket)的滑动窗口(rolling window)。整个滑动窗口用来保存最近 1s 的采样数据,每个小的桶用来保存 500ms 的采样数据。 当时间流动之后,过期的桶会自动被新桶的数据覆盖掉,在图中,在 1000-1500ms 时,bucket 1 的数据因为过期而被丢弃,之后 bucket 3 的数据填到了窗口的头部。
限流公式
判断是否丢弃当前请求的算法如下:
MaxPass 表示最近 5s 内,单个采样窗口中最大的请求数。 MinRt 表示最近 5s 内,单个采样窗口中最小的响应时间。 windows 表示一秒内采样窗口的数量,默认配置中是 5s 50 个采样,那么 windows 的值为 10。
源码分析
BBR struct
cpu
cpu的指标函数,CPU的使用率, 这里为了减小误差,把数字扩大化,乘以1000,比赛使用率60%,也就是0.6 cpu的值就为600
passStat
请求数的采样数据,使用滑动窗口进行统计
rtStat
响应时间的采样数据,同样使用滑动窗口进行统计
inFlight
当前系统中的请求数,数据得来方法是:中间件原理在处理前+1,处理handle之后不管成功失败都减去1
bucketPerSecond
一个 bucket 的时间
bucketSize
桶的数量
prevDropTime
上次触发限流时间
maxPASSCache
单个采样窗口中最大的请求数的缓存数据
minRtCache
单个采样窗口中最小的响应时间的缓存数据
Allow接口
shouldDrop方法
maxInFlight()方法代表过去的负载
maxPass * bucketPerSecond / 1000 为每毫秒处理的请求数
l.minRT() 为 单个采样窗口中最小的响应时间
T ≈ QPS * Avg(RT)
+ 0.5为向上取整
流程图
压测报告
场景1,请求以每秒增加1个的速度不停上升,压测效果如下:
左测是没有限流的压测效果,右侧是带限流的压测效果。 可以看到,没有限流的场景里,系统在 700qps 时开始抖动,在 1k qps 时被拖垮,几乎没有新的请求能被放行,然而在使用限流之后,系统请求能够稳定在 600 qps 左右,rt 没有暴增,服务也没有被打垮,可见,限流有效的保护了服务。