
Matlab solution:
STEP 1. Find the possible intersection points on two circles.
![][01]
[01]: http://latex.codecogs.com/svg.latex?\left{\begin{array}{ll}x2+(y-a)2&=a2\(x-\frac{a}{2})2+(y-\frac{a}{2})2&=(\frac{a}{2})2\end{array}\right.
code:
>> syms x x0 y0 a positive;
>> [x0, y0]=solve('x^2+(y-a)^2=a^2', '(x-a/2)^2+(y-a/2)^2=(a/2)^2');
output:
![][02]
[02]: http://latex.codecogs.com/svg.latex?\left{\begin{array}{ll}x_0&=\frac{5\pm\sqrt{7}}{8}a\y_0&=\frac{3\pm\sqrt{7}}{8}a\end{array}\right.
and the smaller one of x0 is the first cross point.
STEP 2. find the area
s0by integrating functionfon(0, x0), wherefis the part using the analytical function of the inscribed circle with radiusa/2minus the second circle with radiusa.
![][03]
[03]: http://latex.codecogs.com/svg.latex?f=\sqrt{a2-x2}-\sqrt{ax-x^2}-\frac{a}{2}
then, integrate f on (0, x0):
![][04]
[04]: http://latex.codecogs.com/svg.latex?s_0=\int_{0}{x_0}fdx=\int_{0}{\frac{5-\sqrt{7}}{8}a}(\sqrt{a2-x2}-\sqrt{ax-x^2}-\frac{a}{2})dx
code:
>> f=a/2-(a*x-x^2)^(1/2)-(a-(a^2-x^2)^(1/2));
>> s0=simplify(int(f, x, 0, x0(1,1)));
output:
![][05]
[05]: http://latex.codecogs.com/svg.latex?s_0=\frac{\sqrt{7}+2-\pi+2arcsin(\frac{\sqrt{7}-1}{4})-8arcsin(\frac{\sqrt{7}-5}{8})}{16}a^2
STEP 3. find the area
s
>> c= (a^2-pi*a^2/4)/4;
>> s=simplify(c+2*s0);
![][06]
[06]: http://latex.codecogs.com/svg.latex?s=c+2s_0=\frac{2\sqrt{7}-3\pi+4arcsin(\frac{\sqrt{7}-1}{4})-16arcsin(\frac{\sqrt{7}-5}{8})}{16}a2\approx0.1464a2
(done!)