第二次作业

MEM专业R语言第二次作业

 

作业提交截至时间10月9日(周五)晚上11:59前(邮件显示时间为准)


注意事项:

[if !supportLists](1)      [endif]邮件请标注:姓名+学号+第二次作业

[if !supportLists](2)     [endif]作业分为数据分析报告+R代码两个部分。分为两个文件上传提交,不需要打包提交。

[if !supportLists](3)     [endif]杜绝抄袭

[if !supportLists](4)     [endif]提交邮箱:chengken579315@gmail.com



前提:

本次作业使用Rstudio

加载以下包:

library(openxlsx)

library(tidyverse)


问题1:

(1)

x<-NULL

root<-function(a,b,c){

  dert<-(b^2-4*a*c)

  if(dert>0){

    x[1]<-(-b+sqrt(dert))/(2*a)

    x[2]<-(-b-sqrt(dert))/(2*a)

    return(x)

  }else if(dert == 0){

    x[1]<-(-b)/(2*a)

    x[2]<-x[1]

    return(x)

  }else{

    x[1]<-"无实根"

    x[2]<-"无实根"

    return(x)

  }

}

root(2,6,3)


(2)

get.prob<-function(m){

  mx<-0

  for(i in 1:m){

    a<-runif(m,1,5)

    b<-rnorm(m,3,10)

    c<-rexp(m,1)

    dert<-(b^2-4*a*c)

    if(dert>=0){

      mx=mx+1

      }else{

        mx=mx

      }

  }

  return(mx)

}

get.prob(10000)

get.prob_1_2<-get.prob(10000)/10000

get.prob_1_2


随机产生10000组数据,测算的概率为:0.7733


问题2:给定数据,请完成以下任务,请给出code 和输出结果。

[if !supportLists](1)     [endif]请读入数据,使用软件分别给出 price,

marketshare,和brand的缺失值数量。请按照每一个brand,将数据按照先marjetshare 后price 进行从高到低排序

mydata_21<-read.xlsx("E:/个人文件夹/2020MEM/学习/R/homework/hw2/HW2(1).xlsx",sheet=1)

mydata_21

sum(is.na(mydata_21$price))

sum(is.na(mydata_21$marketshare))

sum(is.na(mydata_21$brand))

mydata_21_1<-arrange(mydata_21,desc(brand,marketshare,price))

view(mydata_21_1)


price,

marketshare,和brand的缺失值数量为2、2、2

排序截图如下:





[if !supportLists](2)     [endif]请按照brand 的种类,对price和marketshare 求均值。

mydata_21_2<-group_by(mydata_21,brand)

mean_price<-summarise(mydata_21_2,mean(price,na.rm= TRUE))

mean_marketshare<-summarise(mydata_21_2,mean(marketshare,na.rm= TRUE))

mean_price

mean_marketshare





[if !supportLists](3)     [endif]请按照brand 的种类,对price和marketshare 画散点图。

ggplot(data= mydata_21_2)+

  geom_point(mapping =aes(x=price,y=marketshare))+

  facet_wrap(~brand,nrow = 2)




[if !supportLists](4)     [endif]请按照价格的均值,产生新的变量price_new, 低于均值为“低价格”,高于均值为“高价格”。同样对市场份额也是,产生变量marketshare_new, 数值为“低市场份额”和“高市场份额”

price_1<-mean(mydata_21$price,na.rm= TRUE)

price_1

marketshare_1<-mean(mydata_21$marketshare,na.rm= TRUE)

marketshare_1

mydata_2_4<-mydata_21%>%

  mutate(price_new = ifelse(price%

 mutate(marketshare_new=ifelse(marketshare

mydata_2_4



[if !supportLists](5)     [endif]请估计模型,marketshare为Y,price为X.

#2.5 去除na,线型拟合,求系数

mydata_2_5<-filter(mydata_21,!is.na(brand),!is.na(price),!is.na(marketshare))

mydata_2_5

mydata_2_51<-lm(marketshare~price,data= mydata_2_5)

coef(mydata_2_51)


[if !supportLists](6)     [endif]请画出(5)的拟合直线。

ggplot(mydata_2_51,aes(price,marketshare))+

  geom_point(size = 2)+

  geom_abline(intercept = 0.03341635,slope =-0.36171159)



[if !supportLists](7)     [endif]请随机产生若干直线,验证(5)的结果是最优的

#2.7

#随机产生8条线

models<-tibble(

  a1=runif(8,-0.1,0.1),

  a2=runif(8,-0.1,0.1)

)

ggplot(mydata_2_5,aes(price,marketshare))+

  geom_abline(

    aes(intercept = a1,slope = a2),

    data=models,alpha=1/4

  )+

  geom_point()


model1<-function(a,data){

  a[1]+data$price*a[2]

}


measure_distance<-function(mod,data){

  diff<-data$marketshare-model1(mod,data)

  sqrt(mean(diff^2))

}


mydata_2_7_dist<- function(a1,a2) {

  measure_distance(c(a1,a2),mydata_2_5)

}

models_7<-models%>%

  mutate(dist=purrr::map2_dbl(a1,a2,mydata_2_7_dist))

models_7

min_runif_distance<-min(models_7$dist)

coef_distance<-measure_distance(c(0.03341635,-0.36171159),mydata_2_5)

min_runif_distance>coef_distance



[if !supportLists](8)     [endif]请估计模型,marketshare为Y,price和brand 为X.

mydata_2_8<-lm(marketshare~price+brand,data= mydata_2_5)

coef(mydata_2_8)



library(openxlsx)

library(tidyverse)

x<-NULL

get.root<-function(a,b,c){

  dert<-(b^2-4*a*c)

  if(dert>0){

    x[1]<-(-b+sqrt(dert))/(2*a)

    x[2]<-(-b-sqrt(dert))/(2*a)

    return(x)

  }else if(dert == 0){

    x[1]<-(-b)/(2*a)

    x[2]<-x[1]

    return(x)

  }else{

    x[1]<-"无实根"

    x[2]<-"无实根"

    return(x)

  }

}

get.root(2,6,3)

get.root(1,2,1)

get.root(1,2,8)

#第一大题第二小题

get.prob<-function(m){

  mx<-0

  for(i in 1:m){

    a<-runif(m,1,5)

    b<-rnorm(m,3,10)

    c<-rexp(m,1)

    dert<-(b^2-4*a*c)

    if(dert>=0){

      mx=mx+1

      }else{

        mx=mx

      }

  }

  return(mx)

}

get.prob(10000)

get.prob_1_2<-get.prob(10000)/10000

get.prob_1_2

#第二大题

#1 读入数据,求缺失值,两个条件降序

mydata_21<-read.xlsx("E:/个人文件夹/2020MEM/学习/R/homework/hw2/HW2(1).xlsx",sheet=1)

mydata_21

sum(is.na(mydata_21$price))

sum(is.na(mydata_21$marketshare))

sum(is.na(mydata_21$brand))

mydata_21<-na.omit(mydata_21)

#mydata_21_1<-group_by(mydata_21,brand)

view(mydata_21_1)

mydata_21_1<-arrange(mydata_21,desc(brand,marketshare,price))

view(mydata_21_1)

#2.2求均值

mydata_21_2<-group_by(mydata_21,brand)

mean_price<-summarise(mydata_21_2,mean(price,na.rm = TRUE))

mean_marketshare<-summarise(mydata_21_2,mean(marketshare,na.rm = TRUE))

mean_price

mean_marketshare

#2.3画散点图

ggplot(data = mydata_21_2)+

  geom_point(mapping = aes(x=price,y=marketshare))+

  facet_wrap(~brand,nrow = 2)

#2.4

price_1<-mean(mydata_21$price,na.rm = TRUE)

price_1

marketshare_1<-mean(mydata_21$marketshare,na.rm = TRUE)

marketshare_1

mydata_2_4<-mydata_21%>%

  mutate(price_new = ifelse(price<price_1,"低价格","高价格"))%>%

  mutate(marketshare_new=ifelse(marketshare<marketshare_1,"低市场份额","高市场份额"))

mydata_2_4

#2.5 去除na,线型拟合,求系数

mydata_2_5<-filter(mydata_21,!is.na(brand),!is.na(price),!is.na(marketshare))

mydata_2_5

mydata_2_51<-lm(marketshare~price,data = mydata_2_5)

coef(mydata_2_51)

#2.6

ggplot(mydata_2_51,aes(price,marketshare))+

  geom_point(size = 2)+

  geom_abline(intercept = 0.03341635,slope = -0.36171159)

#2.7

#随机产生8条线

models<-tibble(

  a1=runif(8,-0.1,0.1),

  a2=runif(8,-0.1,0.1)

)

ggplot(mydata_2_5,aes(price,marketshare))+

  geom_abline(

    aes(intercept = a1,slope = a2),

    data=models,alpha=1/4

  )+

  geom_point()

model1<-function(a,data){

  a[1]+data$price*a[2]

}

measure_distance<-function(mod,data){

  diff<-data$marketshare-model1(mod,data)

  sqrt(mean(diff^2))

}

mydata_2_7_dist <- function(a1,a2) {

  measure_distance(c(a1,a2),mydata_2_5)

}

models_7<-models%>%

  mutate(dist=purrr::map2_dbl(a1,a2,mydata_2_7_dist))

models_7

min_runif_distance<-min(models_7$dist)

coef_distance<-measure_distance(c(0.03341635,-0.36171159),mydata_2_5)

min_runif_distance>coef_distance

#2.8数据取2.5去除na的数据

mydata_2_8<-lm(marketshare~price+brand,data = mydata_2_5)

coef(mydata_2_8)

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容