贝叶斯网络

一、什么是概率图模型?

概率图模型(PGM)是用图来表示变量概率依赖关系的理论,表示与模型有关的变量的联合概率分布。

PGM重在对现实世界的描述,核心是条件概率,基本的概率图模型包括贝叶斯网络和马尔科夫网络。

二、贝叶斯网络是什么?

1.PGM

在介绍贝叶斯网络之前,先更深层次的探讨PGM。

首先,在条件概率中,引入概念:随机变量。随机变量是对现实世界的某种抽象,比如:抽到黄球个数用X=i来表示。条件概率,揭示了多组随机变量内在联系。在PGM中,我们用结点表示随机变量。PGM就是解决:如何快速计算一组随机变量的的概率,用数学方式表达,即:P(X=i,Y=j)

那么,如何快速的计算一组随机变量的概率呢?

首先,我们探讨随机变量间的相关性。

随机变量拥有三种关联:

1)直接关联:X直接影响Y 

2)间接关联:X通过Z影响Y  或者   Z同时作用于X与Y 

3)不关联:当X与Y同时作用于Z时。

那么,不相关在条件概率的解释是:P(X,Y|Z),即:在Z被观测的条件下,X与Y相互独立。这表明,在某些条件下,一组随机变量组合中,随机变量是可以独立考虑的,也被称作d分离。

这在PGM中,含义是:在给定父节点(Z)的情况下,任意一个节点(X)都是与其非子节点(Z),都是d分离的

再次重申下:PGM研究的是随机变量之间的联系,联系就是条件。可以说,PGM就是为了解决条件概率分布(CPD)问题而被发明出来的。

2.贝叶斯网络

贝叶斯网络,由一个有向无环图(DAG)和条件概率表(CPT)组成。有向无环图来表示一组随机变量跟它们的条件依赖关系。用CPT表示随机变量间的概率分布。

如何通过贝叶斯网络计算条件分布概率呢?

将条件分布中,无关变量组成的联合分布用独立概率表示,从而减低参数个数,进而减少计算复杂度。

如:P(D,I,G,L,S)

=P(L|G)∗P(S|I)∗P(G|D,I)∗P(D)∗P(I)P(D,I,G,L,S)

=P(L|G)∗P(S|I)∗P(G|D,I)∗P(D)∗P(I)

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 一、什么是概率图模型? 概率图模型(PGM)是用图来表示变量概率依赖关系的理论,表示与模型有关的变量的联合概率分布...
    嘟嘟_afa1阅读 857评论 0 0
  • 贝叶斯决策论 背景 对于一个数据进行分类,那么数据的属性信息称为x,如果知道后验概率的情况下即能得到确定x的情况下...
    yang_young阅读 2,347评论 0 2
  • 小时候学英语,“看病”就是See a doctor,直译就是“看医生”。 我把父亲接到北京诊治...
    老罗xt阅读 441评论 9 6
  • 我也算是早起的资深体验者了,从被动的“不得不起”到成为一种习惯,受益颇多,闷头独乐不是我的本性,把乐分享出去,才是...
    心遐阅读 330评论 2 1
  • 2018.06.13 星期三 阴转雷雨 上午看到老师在群里发了个别同学睡觉的视频,当时就想要中午儿子放学...
    博涵妈妈阅读 96评论 0 0