tidyHeatmap(二):带你个性化玩转热图

前言

在上一期推文:tidyHeatmap(一):带你绘制高端热图中,Immugent简单介绍了一下tidyHeatmap包的基础使用。在本期推文中,Immugent将会进一步对其个性化功能进行讲解。

在跑本期代码之前,Immugent建议最好还是将上一期的tidyHeatmap教程跑一下。因为这期代码的很多参数基本都是在上一期的基础上做了调整,如果直接跑本期代码很可能理解不了其中很多参数的用途。


代码展示

首先还是需要读入示例数据。。。

devtools::install_github("stemangiola/tidyHeatmap")

library(tidyHeatmap)

mtcars_tidy <- 
    mtcars |> 
    as_tibble(rownames="Car name") |> 
    
    # Scale
    mutate_at(vars(-`Car name`, -hp, -vs), scale) |>
    
    # tidyfy
    pivot_longer(cols = -c(`Car name`, hp, vs), names_to = "Property", values_to = "Value")

mtcars_tidy

添加多种信息,绘制多元化热图。

# Create some more data points
pasilla_plus <- 
    tidyHeatmap::pasilla |>
    dplyr::mutate(act = activation) |> 
    tidyr::nest(data = -sample) |>
    dplyr::mutate(size = rnorm(n(), 4,0.5)) |>
    dplyr::mutate(age = runif(n(), 50, 200)) |>
    tidyr::unnest(data) 

# Plot
pasilla_plus |>
    heatmap(
        .column = sample,
        .row = symbol,
        .value = `count normalised adjusted`,   
        scale = "row"
    ) |>
    add_tile(condition) |>
    add_point(activation) |>
    add_tile(act) |>
    add_bar(size) |>
    add_line(age)
图片

Add a layer on top of the heatmap

tidyHeatmap::pasilla |>
    
    # filter
    filter(symbol %in% head(unique(tidyHeatmap::pasilla$symbol), n = 10)) |>
    
    heatmap(
        .column = sample,
        .row = symbol,
        .value = `count normalised adjusted`,   
        scale = "row"
    ) |> 
    layer_point(
        `count normalised adjusted log` > 6 & sample == "untreated3" 
    )
图片

Adding heatmap side-by-side

p_heatmap = heatmap(mtcars_tidy, `Car name`, Property, Value, scale = "row") 

p_heatmap + p_heatmap
图片

External ComplexHeatmap functionalities

heatmap(mtcars_tidy, `Car name`, Property, Value, scale = "row" ) %>%    as_ComplexHeatmap() %>%    ComplexHeatmap::draw(heatmap_legend_side = "left"   )     
图片

Using patchwork to integrate heatmaps

library(ggplot2)
library(patchwork)

p_heatmap =
    mtcars_tidy |> 
    heatmap(
        `Car name`, Property, Value,    
        scale = "row", 
            show_heatmap_legend = FALSE,
        row_names_gp = gpar(fontsize = 7)
    ) 

p_ggplot = tibble(value = 1:10) %>% ggplot(aes(value)) + geom_density()

wrap_heatmap(p_heatmap) + 
    p_ggplot +
    wrap_heatmap(p_heatmap) + 
    plot_layout(width = c(1, 0.3, 1))

图片

小结

想必大家在看高分文献中的热图时都会觉得很美观,能很好的展示要重点突出的信息。而自己绘制的热图却很丑,而且重点不突出,这些其实是可以自我调整进行改善的。

绘制出美观的热图主要依赖于亮点:第一点就是自己的数据,如果数据没有太明显的差异,再怎么美化也不会出很好的热图;第二点就是配色上,除了要选择对比明显的配色,还需要考虑整篇文章中的主题使用颜色,这样才不会太显得太突兀。无论从使用简易程度上还是配色上,tidyHeatmap包是大家的不二选择,小伙伴们赶紧实操起来吧!

好啦,本期分享到这就结束了,欢迎大家有好的绘图软件推荐给我们~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,104评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,816评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,697评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,836评论 1 298
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,851评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,441评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,992评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,899评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,457评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,529评论 3 341
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,664评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,346评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,025评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,511评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,611评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,081评论 3 377
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,675评论 2 359

推荐阅读更多精彩内容