Sensor输入子系统
采用了通用的Linux输入框架,它通过/sys/class/input节点和用户空间进行交互。
Evdev提供了一种访问/dev/input/eventX输入设备事件的通用方法。
系统开机启动
init 是 zygote的父进程, 而system_server和其他所有的com.xxx结尾的应用程序都是从zygote fork 而来
#init.rc
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
SystemServer 启动
系统启动时SystemServer main() 调用android_server_systemserver_nativeInit()
public static void main(String[] args) {
/*
* In case the runtime switched since last boot (such as when
* the old runtime was removed in an OTA), set the system
* property so that it is in sync. We can't do this in
* libnativehelper's JniInvocation::Init code where we already
* had to fallback to a different runtime because it is
* running as root and we need to be the system user to set
* the property. http://b/11463182
*/
SystemProperties.set("persist.sys.dalvik.vm.lib",
VMRuntime.getRuntime().vmLibrary());
if (System.currentTimeMillis() < EARLIEST_SUPPORTED_TIME) {
// If a device's clock is before 1970 (before 0), a lot of
// APIs crash dealing with negative numbers, notably
// java.io.File#setLastModified, so instead we fake it and
// hope that time from cell towers or NTP fixes it
// shortly.
Slog.w(TAG, "System clock is before 1970; setting to 1970.");
SystemClock.setCurrentTimeMillis(EARLIEST_SUPPORTED_TIME);
}
if (SamplingProfilerIntegration.isEnabled()) {
SamplingProfilerIntegration.start();
timer = new Timer();
timer.schedule(new TimerTask() {
@Override
public void run() {
SamplingProfilerIntegration.writeSnapshot("system_server", null);
}
}, SNAPSHOT_INTERVAL, SNAPSHOT_INTERVAL);
}
// Mmmmmm... more memory!
dalvik.system.VMRuntime.getRuntime().clearGrowthLimit();
// The system server has to run all of the time, so it needs to be
// as efficient as possible with its memory usage.
VMRuntime.getRuntime().setTargetHeapUtilization(0.8f);
Environment.setUserRequired(true);
System.loadLibrary("android_servers");
Slog.i(TAG, "Entered the Android system server!");
// Initialize native services.
nativeInit();
// This used to be its own separate thread, but now it is
// just the loop we run on the main thread.
ServerThread thr = new ServerThread();
thr.initAndLoop();
}
}
static void android_server_SystemServer_nativeInit(JNIEnv* env, jobject clazz) {
char propBuf[PROPERTY_VALUE_MAX];
property_get("system_init.startsensorservice", propBuf, "1");
if (strcmp(propBuf, "1") == 0) {
// Start the sensor service
SensorService::instantiate();
}
}
systemReady
客户端实例化PowerManagerService.java中systemReady,初始化SystemSensorManager
SensorManager sensorManager = new SystemSensorManager(mContext, mHandler.getLooper());
系统开机启动的时候,会创建SystemSensorManager的实例,在其构造函数中,主要做:
初始化JNI:调用JNI函数nativeClassInit()进行初始化 (android_hardware_SensorManager.cpp)
获取Sensor列表:调用JNI函数nativeGetNextSensor,对Sensor模块进行初始化。
创建了native层SensorManager的实例。
public SystemSensorManager(Context context, Looper mainLooper) {
mMainLooper = mainLooper;
mContext = context;
mTargetSdkLevel = context.getApplicationInfo().targetSdkVersion;
mGsensorDiscard = 0;
synchronized(sSensorModuleLock) {
if (!sSensorModuleInitialized) {
sSensorModuleInitialized = true;
nativeClassInit();
// initialize the sensor list
final ArrayList<Sensor> fullList = sFullSensorsList;
int i = 0;
do {
Sensor sensor = new Sensor();
i = nativeGetNextSensor(sensor, i);
if (i>=0) {
//Log.d(TAG, "found sensor: " + sensor.getName() +
// ", handle=" + sensor.getHandle());
fullList.add(sensor);
sHandleToSensor.append(sensor.getHandle(), sensor);
}
} while (i>0);
}
}
}
服务端实现
SensorService初始化
SensorService::onFirstRef()方法,在该方法中完成初始化工作。
1.创建SensorDevice实例
2.获取Sensor列表
3.调用SensorDevice.getSensorList(),获取Sensor模块所有传感器列表
4.为每个传感器注册监听器
SensorDevice是单例singleton
构造函数 SensorDevice::SensorDevice()
调用HAL层的hw_get_module()方法,加载Sensor模块so文件
调用sensor.h的sensors_open方法打开设备
调用sensors_poll_device_t->activate()对Sensor模块使能
在新的线程中读取HAL层数据
SensorService实现了Thread类,当在onFirstRef中调用run方法后,将在新的线程中调用SensorService::threadLoop()方法
bool SensorService::threadLoop()
{
ALOGD("nuSensorService thread starting...");
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
const size_t numEventMax = minBufferSize / (1 + mVirtualSensorList.size());
SensorDevice& device(SensorDevice::getInstance());
const size_t vcount = mVirtualSensorList.size();
const int halVersion = device.getHalDeviceVersion();
do {
ssize_t count = device.poll(mSensorEventBuffer, numEventMax);//轮询
APP客户端 使用方法
SensorManager.java 从android4.1开始,把SensorManager定义为一个抽象类,定义了一些主要的方法,该类主要是应用层直接使用的类,提供给应用层的接口)
SystemSensorManager.java (这是implement) 应用程序通过获取其实例,并注册监听接 口,获取sensor数据。
Activity实现了SensorEventListener接口。
在onCreate方法中,获取SystemSensorManager,并获取到加速传感器的Sensor;
在onResume方法中调用SystemSensorManager,registerListenerImp
Sensor accSensor = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
sensorManager.registerListener(this, accSensor, SensorManager.SENSOR_DELAY_NORMAL);
sensorManager.unregisterListener(this, accSensor);
//然后在当前Activity中实现以下的两个函数
public void onSensorChanged(SensorEvent event)
public void onAccuracyChanged(Sensor sensor, int accuracy)
代码和动态库so
Framework部分:
frameworks/base/core/Java/Android/hardware/SensorManager.java
frameworks/base/core/jni/android_hardware_sensorManager.cpp
下面的代码会生成到:libgui.so
frameworks/base/libs/gui/SensorManager.cpp
frameworks/base/libs/gui/SensorEventQueue.cpp
frameworks/base/libs/gui/SensorChannel.cpp
frameworks/base/libs/gui/Sensor.cpp
下面的代码会生成:libsensorservice.so
frameworks/base/services/sensorservice/SensorService.cpp
frameworks/base/services/sensorservice/SensorDevice.cpp
HAL部分:这部分代码最终会生成 sensor.default.so 到/system/lib/hw/
hardware/libhardware/include/hardware/Sensors.h
device/qcom/msm7627a/libsensors/Sensors.cpp
device/qcom/msm7627a/libsensors/SensorBase.h
device/qcom/msm7627a/libsensors/AccSensor.cpp
device/qcom/msm7627a/libsensors/ProximitySensor.cpp
device/qcom/msm7627a/libsensors/LightSensor.cpp
安卓的传感器
安卓的传感器又可以分为基于硬件的和基于软件的。基于硬件的传感器往往是通过物理组件去实现的,他们通常是通过去测量特殊环境的属性获取数据,比如:重力加速度、地磁场强度或方位角度的变化。而基于软件的传感器并不依赖物理设备,尽管它们是模仿基于硬件的传感器的。基于软件的传感器通常是通过一个或更多的硬件传感器获取数据,并且有时会调用虚拟传感器或人工传感器等等,线性加速度传感器和重力传感器就是基于软件传感器的例子。下面通过官方的一张图看看安卓平台支持的所有传感器类型:
TYPE_ACCELEROMETER
加速度传感器,单位是m/s2,测量应用于设备X、Y、Z轴上的加速度
传感器类型值(Sensor Type):1 (0x00000001)
TYPE_AMBIENT_TEMPERATURE
温度传感器,单位是℃
传感器类型值(Sensor Type): 13 (0x0000000d)
TYPE_GAME_ROTATION_VECTOR
游戏动作传感器,不收电磁干扰影响
传感器类型值(Sensor Type):15 (0x0000000f)
TYPE_GEOMAGNETIC_ROTATION_VECTOR
地磁旋转矢量传感器,提供手机的旋转矢量,当手机处于休眠状态时,仍可以记录设备的方位
传感器类型值(Sensor Type):20 (0x00000014)
TYPE_GRAVITY
重力传感器,单位是m/s2,测量应用于设备X、Y、Z轴上的重力
传感器类型值(Sensor Type):9 (0x00000009)
TYPE_GYROSCOPE
陀螺仪传感器,单位是rad/s,测量设备x、y、z三轴的角加速度
传感器类型值(Sensor Type):4 (0x00000004)
TYPE_GYROSCOPE_UNCALIBRATED
未校准陀螺仪传感器,提供原始的,未校准、补偿的陀螺仪数据,用于后期处理和融合定位数据
传感器类型值(Sensor Type):16 (0x00000010)
TYPE_LIGHT
光线感应传感器,单位lx,检测周围的光线强度
传感器类型值(Sensor Type):5 (0x00000005)
TYPE_LINEAR_ACCELERATION
线性加速度传感器,单位是m/s2,该传感器是获取加速度传感器去除重力的影响得到的数据
传感器类型值(Sensor Type):10 (0x0000000a)
TYPE_MAGNETIC_FIELD
磁力传感器,单位是uT(微特斯拉),测量设备周围三个物理轴(x,y,z)的磁场
传感器类型值(Sensor Type):2 (0x00000002)
TYPE_MAGNETIC_FIELD_UNCALIBRATED
未校准磁力传感器,提供原始的,未校准的磁场数据
传感器类型值(Sensor Type):14 (0x0000000e)
TYPE_ORIENTATION
方向传感器,测量设备围绕三个物理轴(x,y,z)的旋转角度
传感器类型值(Sensor Type):3 (0x00000003)
TYPE_PRESSURE
压力传感器,单位是hPa(百帕斯卡),返回当前环境下的压强
传感器类型值(Sensor Type):6 (0x00000006)
TYPE_PROXIMITY
距离传感器,单位是cm,用来测量某个对象到屏幕的距离
传感器类型值(Sensor Type):8 (0x00000008)
TYPE_RELATIVE_HUMIDITY
湿度传感器,单位是%,来测量周围环境的相对湿度
传感器类型值(Sensor Type):12 (0x0000000c)
TYPE_ROTATION_VECTOR
旋转矢量传感器,旋转矢量代表设备的方向
传感器类型值(Sensor Type):11 (0x0000000b)
TYPE_SIGNIFICANT_MOTION
特殊动作触发传感器
传感器类型值(Sensor Type):17 (0x00000011)
TYPE_STEP_COUNTER
计步传感器
传感器类型值(Sensor Type):19 (0x00000013)
TYPE_STEP_DETECTOR
步行检测传感器,用户每走一步就触发一次事件
传感器类型值(Sensor Type):18 (0x00000012)
TYPE_TEMPERATURE
温度传感器,目前已被TYPE_AMBIENT_TEMPERATURE替代
传感器类型值(Sensor Type):7 (0x00000007)