MR的shuffle机制

Shuffle过程是MapReduce的核心,描述着数据从map task输出到reduce task输入的这段过程。

Hadoop的集群环境,大部分的map task和reduce task是执行在不同的节点上的,那么reduce就要取map的输出结果。那么集群中运行多个Job时,task的正常执行会对集群内部的网络资源消耗严重。虽说这种消耗是正常的,是不可避免的,但是,我们可以采取措施尽可能的减少不必要的网络资源消耗。另一方面,每个节点的内部,相比于内存,磁盘IO对Job完成时间的影响相当的大,。

所以:从以上分析,shuffle过程的基本要求:

  1.完整地从map task端拉取数据到reduce task端

  2.在拉取数据的过程中,尽可能地减少网络资源的消耗

  3.尽可能地减少磁盘IO对task执行效率的影响

那么,Shuffle的设计目的就要满足以下条件:

  1.保证拉取数据的完整性

  2.尽可能地减少拉取数据的数据量

  3.尽可能地使用节点的内存而不是磁盘


Shuffle的执行阶段流程:

1).Collect阶段:将MapTask的结果输出到默认大小为100M的环形缓冲区,保存的是key/value序列化数据,Partition分区信息等。

2).Spill 阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了combiner,还会将有相同分区号和key的数据进行排序。 

3).Merge 阶段:把所有溢出的临时文件进行一次合并操作,以确保一个MapTask最终只产生一个中间数据文件。

4).Copy阶段: ReduceTask启动Fetcher线程到已经完成MapTask的节点上复制一份属于自己的数据,这些数据默认会保存在内存的缓冲区中,当内存的缓冲区达到一定的阀值的时候,就会将数据写到磁盘之上。

5).Merge阶段:在ReduceTask远程复制数据的同时,会在后台开启两个线程(一个是内存到磁盘的合并,一个是磁盘到磁盘的合并)对内存到本地的数据文件进行合并操作。

6).Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask 阶段已经对数据进行了局部的排序,ReduceTask只需保证Copy的数据的最终整体有效性即可


处理过程:

1.map进程不基于block进行,而是基于一个抽象的切片split,map task的并发数是由切片的数量决定的,有多少个切片就启动多少个map task。

2.切片是一个逻辑概念,指的是文件的数据偏移量范围

3.切片的具体大小应该根据处理的文件的大小来调整

4.每个map都有一个环形内存缓冲区,用于存储任务的输出,默认大小100M,到大阈值0.8后,一个后台线程把内容写到(spill)磁盘的指定目录中。

5.写入磁盘前,要进行partition,sort,如果有combiner,combine排序后数据

6.然后把所有溢出的临时文件进行一次合并操作,以确保一个MapTask最终只产生一个中间数据文件。此时还需要重新排序。

7.reducer 通过http方式得到输出文件的分区

8.reduce stask接受到多个map输出的中间数据文件,这些中间数据文件分别有序,但是整体无序,因此还需要重新进行排序操作。然后进行merge合并操作。

9.最终由一个reduce task处理,结果输出到一个文件中。



整个shuffle过程都是由MRAPPMaster进行控制

MRAPPMaster的任务监控调度机制处理过程:

生产集群调优

1、每个map缓存内存大小设置(io.sort.mb属性),

2、溢出的阈值设置(io.sort.splill.percent)

3、每个spill切片大小

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容