论文-Recurrent neural network based language model(RNNLM)

1. 简称

论文《Recurrent neural network based language model》简称RNNLM,作者Tomas Mikolov,经典的循环/递归神经语言模型。

2. 摘要

提出了一种新的基于递归神经网络的语言模型(RNN LM)及其在语音识别中的应用。

结果表明,与现有的退避语言模型相比,通过使用几个RNN LMs的混合,可以获得大约50%的困惑减少。

语音识别实验表明,当比较针对相同数据量训练的模型时,“华尔街日报”任务的单词错误率降低约18%,而在难度更大的NIST RT05任务上,即使退避模型训练的数据量比RNN LM多得多,单词错误率也减少约5%。

我们提供了充足的经验证据,以表明连接主义语言模型优于标准的n-gram技术,除了它们的高计算(训练)复杂性。

3. 核心

RNNLM

在我们的工作中,我们使用了一种通常被称为简单的递归神经网络或Elman网络的架构。这可能是递归神经网络的最简单的可能版本,并且非常容易实现和训练。

网络具有输入层x、隐藏层s(也称为上下文层或状态)和输出层y。对网络的时间t的输入是x(t),输出表示为y(t),并且s(t)是网络的状态(隐藏层)。输入向量x(t)是通过连接表示当前单词的向量w而形成的,并且在时间t−1从上下文层s中的神经元输出。然后,输入、隐藏和输出层被计算如下:

x(t)=w(t)+s(t-1)\tag{3.1}
s_j(t)=f(\sum_ix_i(t)u_{ji})\tag{3.2}
y_k(t)=g(\sum_js_j(t)v_{kj})\tag{3.3}

其中f(z)是S型激活函数:
f(z)=\frac{1}{1+e^{-z}}\tag{3.4}

并且g(z)是softmax函数:
g(z_m)=\frac{e^{z_m}}{\sum_ke^{z_k}}\tag{3.5}

对于初始化,可以将s(0)设置为小值的向量,如0.1-当处理大量数据时,初始化并不重要。

在接下来的时间步长中,s(t+1)s(t)的副本。输入向量x(t)表示使用1-of-N编码和先前上下文层编码的时间t中的字-向量x的大小等于词汇表V的大小(实际上可以是30000−200000)加上上下文层的大小。上下文(隐藏)层的大小通常是30−500个隐藏单元。

基于我们的实验,隐藏层的大小应该反映训练数据量-对于大量的数据,需要大的隐藏层。

把上面的形式写成向量形式:
\begin{cases} s(t)=f(Uw(t)+Ws(t-1)) \\ y(t)=g(Vs(t)) \end{cases}\tag{3.6}

4. 代码编写

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import torch.nn.functional as F

sentence = """When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a totter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.""".split()

# 准备词表与相关字典
vocab = set(sentence)
print(vocab)
word2index = {w:i for i, w in enumerate(vocab)}
print(word2index)
index2word = {i:w for i, w in enumerate(vocab)}
print(index2word)

# 准备N-gram训练数据 each tuple is ([word_i-1], target word)
data_source = []
data_target = []
for i in range(len(sentence)-1):
    data_source.append(word2index[sentence[i]])
    data_target.append(word2index[sentence[i+1]])

print(data_source)
print(data_target)

class MyDataset(Dataset):
    def __init__(self, words, labels):
        self.words = words
        self.labels = labels

    def __getitem__(self, index):  # 返回的是tensor
        input, target = self.words[index], self.labels[index]
        return input, target

    def __len__(self):
        return len(self.words)

# 数据批量化
dataset = MyDataset(data_source, data_target)
train_loader = DataLoader(dataset, batch_size=2, shuffle=True)

# for _, x in enumerate(train_loader):
#     print(x[0].unsqueeze(-1).size())
#     print(x[1])
#     break

# 模型所需参数
EMBEDDING_DIM = 10
HIDDEN_DIM = 128

# 创建模型
class RNNLanguageModler(nn.Module):

    def __init__(self, vocab_size, embedding_dim, hidden_dim):
        super(RNNLanguageModler, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True, num_layers=1)
        self.linear = nn.Linear(hidden_dim, vocab_size)

    def forward(self, inputs):
        embeds = self.embedding(inputs)
        output, hidden = self.rnn(embeds)
        out = self.linear(hidden.view(hidden.size(1), -1))
        return out

losses = []
loss_function = nn.CrossEntropyLoss()
model = RNNLanguageModler(len(vocab), EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr = 0.001)

for epoch in range(100):
    total_loss = 0

    for _, batch in enumerate(train_loader):
        # Step 1. Prepare the inputs to be passed to the model
        x = batch[0].view(-1, 1)

        # Step 2. Before passing in a new instance, you need to zero out the gradients from the old instance
        model.zero_grad()

        # Step 3. Run forward pass
        out = model(x)

        # Step 4. Compute your loss function.
        loss = loss_function(out, batch[1])

        # Step 5. Do the backword pass and update the gradient
        loss.backward()
        optimizer.step()

        # Get the Python number from a 1-element Tensor by calling tensor.item()
        total_loss += loss.item()
    
    losses.append(total_loss)

print(losses) # The loss decreased every iteration over the training data!

# 结果
{"excuse,'", "youth's", 'thou', 'sunken', 'gazed', 'cold.', 'mine', 'his', 'all', 'worth', 'thine', 'within', 'besiege', "deserv'd", 'forty', 'field,', 'so', 'see', 'praise', "beauty's", 'trenches', 'the', 'small', 'old,', 'to', 'an', 'by', 'be', "totter'd", 'Thy', 'child', 'more', 'own', 'When', 'where', 'much', 'beauty', 'Then', 'days;', 'lusty', 'were', 'warm', 'count,', 'new', 'proud', 'in', 'now,', 'If', 'To', 'deep', 'shame,', "feel'st", 'Will', 'winters', 'dig', 'old', 'held:', 'weed', 'treasure', 'sum', 'art', 'blood', 'Shall', 'And', 'my', 'Proving', 'This', 'thriftless', 'made', 'Were', "'This", 'brow,', 'asked,', 'and', 'eyes,', 'livery', 'couldst', 'How', 'praise.', 'Where', 'succession', 'make', 'answer', 'a', 'being', 'lies,', 'on', 'thine!', 'say,', 'thy', 'all-eating', 'use,', 'it', 'fair', 'of', 'when', 'shall'}
{"excuse,'": 0, "youth's": 1, 'thou': 2, 'sunken': 3, 'gazed': 4, 'cold.': 5, 'mine': 6, 'his': 7, 'all': 8, 'worth': 9, 'thine': 10, 'within': 11, 'besiege': 12, "deserv'd": 13, 'forty': 14, 'field,': 15, 'so': 16, 'see': 17, 'praise': 18, "beauty's": 19, 'trenches': 20, 'the': 21, 'small': 22, 'old,': 23, 'to': 24, 'an': 25, 'by': 26, 'be': 27, "totter'd": 28, 'Thy': 29, 'child': 30, 'more': 31, 'own': 32, 'When': 33, 'where': 34, 'much': 35, 'beauty': 36, 'Then': 37, 'days;': 38, 'lusty': 39, 'were': 40, 'warm': 41, 'count,': 42, 'new': 43, 'proud': 44, 'in': 45, 'now,': 46, 'If': 47, 'To': 48, 'deep': 49, 'shame,': 50, "feel'st": 51, 'Will': 52, 'winters': 53, 'dig': 54, 'old': 55, 'held:': 56, 'weed': 57, 'treasure': 58, 'sum': 59, 'art': 60, 'blood': 61, 'Shall': 62, 'And': 63, 'my': 64, 'Proving': 65, 'This': 66, 'thriftless': 67, 'made': 68, 'Were': 69, "'This": 70, 'brow,': 71, 'asked,': 72, 'and': 73, 'eyes,': 74, 'livery': 75, 'couldst': 76, 'How': 77, 'praise.': 78, 'Where': 79, 'succession': 80, 'make': 81, 'answer': 82, 'a': 83, 'being': 84, 'lies,': 85, 'on': 86, 'thine!': 87, 'say,': 88, 'thy': 89, 'all-eating': 90, 'use,': 91, 'it': 92, 'fair': 93, 'of': 94, 'when': 95, 'shall': 96}
{0: "excuse,'", 1: "youth's", 2: 'thou', 3: 'sunken', 4: 'gazed', 5: 'cold.', 6: 'mine', 7: 'his', 8: 'all', 9: 'worth', 10: 'thine', 11: 'within', 12: 'besiege', 13: "deserv'd", 14: 'forty', 15: 'field,', 16: 'so', 17: 'see', 18: 'praise', 19: "beauty's", 20: 'trenches', 21: 'the', 22: 'small', 23: 'old,', 24: 'to', 25: 'an', 26: 'by', 27: 'be', 28: "totter'd", 29: 'Thy', 30: 'child', 31: 'more', 32: 'own', 33: 'When', 34: 'where', 35: 'much', 36: 'beauty', 37: 'Then', 38: 'days;', 39: 'lusty', 40: 'were', 41: 'warm', 42: 'count,', 43: 'new', 44: 'proud', 45: 'in', 46: 'now,', 47: 'If', 48: 'To', 49: 'deep', 50: 'shame,', 51: "feel'st", 52: 'Will', 53: 'winters', 54: 'dig', 55: 'old', 56: 'held:', 57: 'weed', 58: 'treasure', 59: 'sum', 60: 'art', 61: 'blood', 62: 'Shall', 63: 'And', 64: 'my', 65: 'Proving', 66: 'This', 67: 'thriftless', 68: 'made', 69: 'Were', 70: "'This", 71: 'brow,', 72: 'asked,', 73: 'and', 74: 'eyes,', 75: 'livery', 76: 'couldst', 77: 'How', 78: 'praise.', 79: 'Where', 80: 'succession', 81: 'make', 82: 'answer', 83: 'a', 84: 'being', 85: 'lies,', 86: 'on', 87: 'thine!', 88: 'say,', 89: 'thy', 90: 'all-eating', 91: 'use,', 92: 'it', 93: 'fair', 94: 'of', 95: 'when', 96: 'shall'}
[33, 14, 53, 96, 12, 89, 71, 63, 54, 49, 20, 45, 89, 19, 15, 29, 1, 44, 75, 16, 4, 86, 46, 52, 27, 83, 28, 57, 94, 22, 9, 56, 37, 84, 72, 34, 8, 89, 36, 85, 79, 8, 21, 58, 94, 89, 39, 38, 48, 88, 11, 10, 32, 49, 3, 74, 69, 25, 90, 50, 73, 67, 78, 77, 35, 31, 18, 13, 89, 19, 91, 47, 2, 76, 82, 70, 93, 30, 94, 6, 62, 59, 64, 42, 73, 81, 64, 55, 0, 65, 7, 36, 26, 80, 87, 66, 40, 24, 27, 43, 68, 95, 2, 60, 23, 63, 17, 89, 61, 41, 95, 2, 51, 92]
[14, 53, 96, 12, 89, 71, 63, 54, 49, 20, 45, 89, 19, 15, 29, 1, 44, 75, 16, 4, 86, 46, 52, 27, 83, 28, 57, 94, 22, 9, 56, 37, 84, 72, 34, 8, 89, 36, 85, 79, 8, 21, 58, 94, 89, 39, 38, 48, 88, 11, 10, 32, 49, 3, 74, 69, 25, 90, 50, 73, 67, 78, 77, 35, 31, 18, 13, 89, 19, 91, 47, 2, 76, 82, 70, 93, 30, 94, 6, 62, 59, 64, 42, 73, 81, 64, 55, 0, 65, 7, 36, 26, 80, 87, 66, 40, 24, 27, 43, 68, 95, 2, 60, 23, 63, 17, 89, 61, 41, 95, 2, 51, 92, 5]
[261.4552655220032, 261.2737054824829, 261.0931797027588, 260.9118666648865, 260.73165369033813, 260.55105447769165, 260.3709635734558, 260.1912055015564, 260.011239528656, 259.8317127227783, 259.65210247039795, 259.47280836105347, 259.2937173843384, 259.1144289970398, 258.93572902679443, 258.75625705718994, 258.5772943496704, 258.398380279541, 258.2191872596741, 258.04021644592285, 257.8635997772217, 257.68174028396606, 257.50267362594604, 257.3237919807434, 257.1443405151367, 256.96484422683716, 256.7852563858032, 256.60576152801514, 256.4258427619934, 256.2457194328308, 256.06648778915405, 255.8852858543396, 255.70466136932373, 255.52420616149902, 255.34329175949097, 255.16089391708374, 254.9813151359558, 254.79758167266846, 254.61532545089722, 254.43314790725708, 254.25010776519775, 254.06746768951416, 253.88412618637085, 253.69995212554932, 253.51536560058594, 253.33151292800903, 253.14607954025269, 252.9601068496704, 252.77443265914917, 252.58800411224365, 252.40100288391113, 252.2142734527588, 252.02623414993286, 251.83781957626343, 251.64954042434692, 251.45993757247925, 251.27176523208618, 251.08007860183716, 250.88931608200073, 250.69780254364014, 250.50601959228516, 250.3132610321045, 250.11953020095825, 249.92643022537231, 249.7322335243225, 249.5378646850586, 249.342125415802, 249.14556121826172, 248.94805097579956, 248.7504014968872, 248.55196523666382, 248.35296511650085, 248.1533761024475, 247.95326471328735, 247.751886844635, 247.5496575832367, 247.34726858139038, 247.14575910568237, 246.9398694038391, 246.7349500656128, 246.52930426597595, 246.3258776664734, 246.11556768417358, 245.90801095962524, 245.69976925849915, 245.48987817764282, 245.27924585342407, 245.06853342056274, 244.85593819618225, 244.64315629005432, 244.42985773086548, 244.21367502212524, 243.99954438209534, 243.78382658958435, 243.56601929664612, 243.3485345840454, 243.12900829315186, 242.9099476337433, 242.68885612487793, 242.46759343147278]

参考文献

  1. Recurrent neural network based language model
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容