KNN两种分类器的python简单实现及其结果可视化比较

1.KNN算法简介及其两种分类器
KNN,即K近邻法(k-nearst neighbors),所谓的k最近邻,就是指最接近的k个邻居(数据),即每个样本都可以由它的K个邻居来表达。kNN算法的核心思想是,在一个含未知样本的空间,可以根据离这个样本最邻近的k个样本的数据类型来确定样本的数据类型。
在scikit-learn 中,与近邻法这一大类相关的类库都在sklearn.neighbors包之中。其中分类器有KNN分类树KNeighborsClassifier、限定半径最近邻分类树的类RadiusNeighborsClassifier以及最近质心分类算法NearestCentroid等等。前两种分类算法中,scikit-learn实现两个不同的最近邻分类器:KNeighborsClassifier基于每个查询点的k个最近邻点实现学习,其中k是用户指定的最近邻数量。 RadiusNeighborsClassifier基于每个训练点的固定半径r内的最近邻搜索实现学习,其中r是用户指定的半径浮点值。关于这两种分类器的差别可以参考KNN算法的KD树和球树进行了解。

2.分类器KNeighborsClassifier的python实现以及结果的可视化
基于scikit-learn的KNeighborsClassifier以及RadiusNeighborsClassifier分类器,本文构建样本数据,采用这两种方法进行分类预测,根据结果画出二者的预测集,从而进行比较。
(1)首先是导入各种库。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets
import pandas as pd

(2)然后生成样本数据,这里要注意需要生成只有两个特征值的数据集。

from sklearn.datasets.samples_generator import make_classification
# X为样本特征,y为样本类别输出, 共200个样本,每个样本2个特征,输出有3个类别,没有冗余特征,每个类别一个簇
X, y = make_classification(n_samples=200, n_features=2, n_redundant=0,
                             n_clusters_per_class=1, n_classes=3)
#之所以生成2个特征值是因为需要在二维平面上可视化展示预测结果,所以只能是2个,3个都不行
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.show() #根据随机生成样本不同,图形也不同

本次结果生成的三个类别分布如下:
Paste_Image.png

(3)采用KNeighborsClassifier进行分类与预测

clf = neighbors.KNeighborsClassifier(n_neighbors = 15 , weights='distance')
clf.fit(X, y)  #用KNN来拟合模型,我们选择K=15,权重为距离远近
h = .02  #网格中的步长
#确认训练集的边界
#生成随机数据来做测试集,然后作预测
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h)) #生成网格型二维数据对
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

(4)画出不同预测类别的区域地图以及实际训练数据的类别位置

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) #给不同区域赋以颜色
cmap_bold = ListedColormap(['#FF0000', '#003300', '#0000FF'])#给不同属性的点赋以颜色
#将预测的结果在平面坐标中画出其类别区域
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# 也画出所有的训练集数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())

plt.show()

得到结果为:
Paste_Image.png

结果可以看出,预测区域能够涵盖大部分的训练数据,除了少部分训练数据分布异常外(如部分红色点进入绿色区域,蓝色点进入红色区域)。

3.分类器RadiusNeighborsClassifier的python实现以及结果的可视化
其步骤与2中KNeighborsClassifier步骤基本相同,主要是在拟合与预测上采用KNeighborsClassifier分类函数,整个代码为:

clf1 = neighbors.RadiusNeighborsClassifier(10.0, weights='distance')
clf1.fit(X, y)
Z1 = clf1.predict(np.c_[xx.ravel(), yy.ravel()])
Z1 = Z1.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z1, cmap=cmap_light)
# 也画出所有的训练集数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())

plt.show()

得到结果:
Paste_Image.png

此图与上图相比,还是有不同的,特别是绿色区域范围扩大了。哪种方法比较好呢?从可视化图形不容易看出,可视化只能直观看出二者的结果差异性,最好的评价二者分类优劣的方法就是计算其预测的误差率(loss funtion)或者准确率(预测正确的个数占总数的比例)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容