Python - 线性回归(Linear Regression) 的 Python 实现

背景

学习 Linear Regression in Python – Real Python,前面几篇文章分别讲了“regression怎么理解“,”线性回归怎么理解“,现在该是实现的时候了。

线性回归的 Python 实现:基本思路

  • 导入 Python 包: 有哪些包推荐呢?
  • 准备数据
  • 建模拟合
  • 验证模型的拟合度
  • 预测:用模型来预测新的数据

实现细节

以最简单的线性回归为例,代码参考的是原文。

重点是掌握基本思路,以及关键的几个函数。影响拟合度的因素很多,数据源首当其冲,模型的选择也是关键,这些在实际应用中具体讨论,这里就简单的对应前面的基本思路将 sample 代码及运行结果贴一下,稍加解释。

安装并导入包

根据自己的需要导入

pip install scikit-learn
pip install numpy
pip install statsmodels

from sklearn.preprocessing import PolynomialFeatures
import numpy as np
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm

准备数据

""" prepare data
x: regressor
y: predictor
reshape: make it two dimentional - one column and many rows
y can also be 2 dimensional
"""

x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1))
"""
[[ 5]
 [15]
 [25]
 [35]
 [45]
 [55]] 
"""
y = np.array([5, 20, 14, 32, 22, 38])
print(x, y)
# [ 5 20 14 32 22 38]

建模

'''create a model and fit it'''
model = LinearRegression()
model = model.fit(x, y)
print(model)
# LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

验证模型的拟合度

'''get result
y = b0 + b1x
'''
r_sq = model.score(x, y)
print('coefficient of determination(𝑅²) :', r_sq)
# coefficient of determination(𝑅²) : 0.715875613747954
print('intercept:', model.intercept_)
# (标量) 系数b0 intercept: 5.633333333333329 -------this will be an array when y is also 2-dimensional
print('slope:', model.coef_)
# (数组)斜率b1 slope: [0.54]        ---------this will be 2-d array when y is also 2-dimensional

预测

'''predict response
given x, get y from the model y = b0+b1x
'''
y_pred = model.predict(x)
print('predicted response:', y_pred, sep='\n')
#predicted response:
#[8.33333333 13.73333333 19.13333333 24.53333333 29.93333333 35.33333333]

'''forecast'''
z = np.arange(5).reshape((-1, 1))
y = model.predict(z)
print(y)
#[5.63333333 6.17333333 6.71333333 7.25333333 7.79333333]

问题

Reference

Changelog

  • 2020-01-14 init
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容