Java 8 Streams API:对Stream分组和分区

这篇文章展示了如何使用 Streams API 中的 Collector 及 groupingBy 和 partitioningBy 来对流中的元素进行分组和分区。

思考一下 Employee 对象流,每个对象对应一个名字、城市和销售数量,如下表所示:

+----------+------------+-----------------+
| Name | City | Number of Sales |
+----------+------------+-----------------+
| Alice | London | 200 |
| Bob | London | 150 |
| Charles | New York | 160 |
| Dorothy | Hong Kong | 190 |
+----------+------------+-----------------+

分组

首先,我们利用(lambda表达式出现之前的)命令式风格Java 程序对流中的雇员按城市进行分组:

Map<String, List<Employee>> result = new HashMap<>();
for (Employee e : employees) {
  String city = e.getCity();
  List<Employee> empsInCity = result.get(city);
  if (empsInCity == null) {
    empsInCity = new ArrayList<>();
    result.put(city, empsInCity);
  }
  empsInCity.add(e);
}

你可能很熟悉写这样的代码,你也看到了,一个如此简单的任务就需要这么多代码!

而在 Java 8 中,你可以使用 groupingBy 收集器,一条语句就能完成相同的功能,像这样:

Map<String, List<Employee>> employeesByCity =
  employees.stream().collect(groupingBy(Employee::getCity));

结果如下面的 map 所示:

{New York=[Charles], Hong Kong=[Dorothy], London=[Alice, Bob]}

还可以计算每个城市中雇员的数量,只需传递一个计数收集器给 groupingBy 收集器。第二个收集器的作用是在流分类的同一个组中对每个元素进行递归操作。

Map<String, Long> numEmployeesByCity =
  employees.stream().collect(groupingBy(Employee::getCity, counting()));

结果如下面的 map 所示:

{New York=1, Hong Kong=1, London=2}

顺便提一下,该功能与下面的 SQL 语句是等同的:

select city, count(*) from Employee group by city

另一个例子是计算每个城市的平均年龄,这可以联合使用 averagingInt 和 groupingBy 收集器:

Map<String, Double> avgSalesByCity =
  employees.stream().collect(groupingBy(Employee::getCity,averagingInt(Employee::getNumSales)));

结果如下 map 所示:

{New York=160.0, Hong Kong=190.0, London=175.0}

分区

分区是一种特殊的分组,结果 map 至少包含两个不同的分组——一个true,一个false。例如,如果想找出最优秀的员工,你可以将所有雇员分为两组,一组销售量大于 N,另一组小于 N,使用 partitioningBy 收集器:

Map<Boolean, List<Employee>> partitioned =
  employees.stream().collect(partitioningBy(e -> e.getNumSales() > 150));

输出如下结果:

{false=[Bob], true=[Alice, Charles, Dorothy]}

你也可以将 groupingBy 收集器传递给 partitioningBy 收集器来将联合使用分区和分组。例如,你可以统计每个分区中的每个城市的雇员人数:

Map<Boolean, Map<String, Long>> result =
  employees.stream().collect(partitioningBy(e -> e.getNumSales() > 150,
                               groupingBy(Employee::getCity, counting())));

这样会生成一个二级 Map:

{false={London=1}, true={New York=1, Hong Kong=1, London=1}}

转载

原文链接: javacodegeeks 翻译: ImportNew.com - paddx
译文链接: http://www.importnew.com/17313.html
[ 转载请保留原文出处、译者和译文链接。]

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容